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Abstract

Giving human-like visual capabilities to computers is an
important goal in computer vision research. Recogni-
tion and description of 3-dimensional objects is a largely
unsolved problem in this area despite the fact that
many proposals have been put forth by a number of
researchers in recent years (Chin & Dyer, 1986; Besl
& Jain, 1985; Marill, 1991; Honavar, 1992b). We pro-
pose a framework for representation of complex three-
dimensional objects which is motivated by the need for:
parsimony (efficiency) in model construction; amenabil-
ity to learning (incremental acquisition, assimilation,
adaptation, and refinement of models of objects in the
environment); and seamless integration as part of an
intelligent agent architecture (by keeping the represen-
tation and learning structures multi-purpose and flexi-
ble).

This paper argues for a hierarchical representational
scheme motivated by considerations such as the ones
enumerated above; presents such a representational
framework; and outlines an approach for the design of
learning algorithms for task-driven, parsimonious, in-
cremental acquisition and refinement of the necessary
representations within the proposed framework.

1 Description of the Represen-
tational Framework

1.1 Background Assumptions

We will proceed under the assumption that complex
3-dimensional objects are made of 3-dimensional prim-
itive components each of which can be identified in the
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2-dimensional image(s) of the scene using known tech-
niques. A number of such techniques have been devel-
oped to date in the literature (Wang & Freeman, 1990;
Gigus et al., 1991; Kim & Kak, 1991; etc.).

It is also assumed that the model base stores the
representation of objects from a standard view (that is,
we will not store different views of the object resulting
from rotation). Our aim here is to focus on the design of
the hierarchical representation scheme and the accom-
panying learning algorithms. The limitations imposed
by this assumption can be revoked later exploiting ad-
vances in viewpoint-invariant representations such as
those based on aspect graphs (Wang & Freeman, 1990;
Gigus et al., 1991; Koenderink & van Doorn, 1979;
Plantinga & Dyer, 1990; Korn & Dyer, 1987; Watts,
1988; Kriegman & Ponce, 1990).

We will also assume that the scene contains only a
single object or the system has some attentional mech-
anisms (Tsotsos, 1990) that can limit its field of active
visual analysis to a single object in the scene.

1.2 Design Considerations

Our aim is to design a representational framework that
facilitates the descriptions of complex 3-dimensional ob-
jects to be incrementally constructed and refined as
necessary for the task of object recognition, descrip-
tion, (and eventually, manipulation by effectors). This
is accomplished using an ordered sequence of extrac-
tion, abstraction, differentiation, and generalization op-
erators that operate on instances of 3-dimensional ob-
jects and the existing model base. The design of the
representational framework and the operators that ef-
fect changes in representation is motivated by the need
for building parsimonious representations with just the
right amount of detail necessary for adequate recogni-
tion and description of the objects encountered by the



system in its environment (Honavar, 1992b). For in-
stance, some complex objects might be recognized by
the system based on the mere occurrence of the con-
stituent parts in the 2-dimensional image. When such
a coarse-level representation is found inadequate the
system adds additional detail necessary for successful
recognition (e.g., relative spatial arrangement of parts,
further decomposition of parts into subparts and so on)
to its internal representation of objects in its environ-
ment. Within this framework, different objects might
be encoded at different levels of detail (in a manner
that is loosely analogous to multi-resolution encoding

(Rosenfeld, 1984; Uhr, 1987) of two-dimensional im-
ages).

The level of detail in the representation is a function
of the recognition and description tasks demanded of
the system. The refinement of internal representations
(model base) maintained by the system is accomplished
through feedback-guided learning.

The discussion of the representational scheme pre-
sented here is somewhat tentative (in terms of some
of the details which we may have to modify in the
light of the experience gained by implementing and
evaluating a prototype system). The general idea is
to have an ordered sequence of levels of representation
in which successive levels can incorporate details that
were ignored by preceding levels. To keep the system
as general as possible and to facilitate modular design,
we have chosen to use generalized distance measures
(GDM) (Honavar, 1992a; Honavar, 92¢) for matching
objects represented within this framework. GDM is a
generalization of the concept of Levenshtein edit dis-
tance. The distance between an instance and a model
is given by the cost of the minimum cost sequence of
edit operations needed to transform the instance into
the model. The costs of individual edit operations is al-
lowed to be different for each model and these costs are
determined by a process of inductive learning. GDM of-
fer a natural generalization of the notion of distance or
measure of mismatch between two objects as used in a
variety of pattern recognition and artificial intelligence
techniques (e.g., k-nearest neighbor classifiers, artificial
neural networks using radial basis functions, and struc-
tured or syntactic methods that use strings, trees, pyra-
mids, attributed relational graphs, as well as artificial
intelligence techniques that employ conceptual graphs,
frames, and schema structures). A class of GDM-based
inductive learning algorithms is currently under devel-
opment (Honavar,1992a). Such algorithms offer a nat-
ural extension of generative or constructive algorithms
that enable the adaptive and parsimonious determina-
tion of necessary artificial neural network topologies

through learning (Honavar & Uhr, 1992).

1.3 Hierarchy of representational levels

Primitive parts are identified using known methods and
relations among parts in the scene are computed. Then
the scene is matched against the hierarchically repre-
sented set of models (which themselves are learned).
Matching proceeds from the coarsest level toward the
most detailed level until a unique model is identified as
the best-match or the match fails (in the event no ex-
isting model gives a sufficiently close match — in this
case, if the system is in a learning mode, it will con-
struct and store a new model from the scene for fu-
ture use). The identification of the best match at each
level is performed using a generalized distance measure
(GDM-based matching criterion is used at each level
for finding the best match.

Our current design incorporates the following ordered
sequence of levels (at present, the designs for levels 1-3
is more or less final whereas levels 3-6 are somewhat
tentative).

e Level 1: This level treats the models as well as
the object in the scene as if they were made of un-
ordered sets of primitive objects. The best match-
ing model (roughly speaking), is the one that has
the largest number of components in common with
the object in the scene (this is not quite true be-
cause GDM allows weighting of the mismatches
and the weights are set by the learning algorithm).

e Level 2: This level incorporates spatial relation-
ships between primitives. The distance reflects the
similarity between the scene and models in terms
of the number of pairs of primitives which has
the same relationship. Relationship between prim-
itives are encoded with respect to the standard
view. The distance between the model and the
scene is again computed using the GDM which in
this case measures the weighted cost of converting
the scene to the model by performing a sequence
of addition and deletion operations. The match-
ing algorithm for this level is an adaptation of
existing edit-distance computation algorithms for
strings and trees (Wagner & Fischer, 1974; Zhang
& Shasha, 1989; Wong et al., 1990). We have de-
vised a mapping from graphs to strings that relies
on a predetermined ordering over the vertex set
that enables efficient matching of relational graphs.
A natural extension of this paradigm involves the
use of random graphs to encode the models, the
specification of a generalized distance measure for
random graphs, and the development of the corre-
sponding inductive learning algorithms. Recently,
we have made some progress in this direction by
defining entropy/information-theoretic cost func-



tions for random graphs which can be minimized
using connectionist-like learning algorithms which
modify the parameters of models represented by
random graphs. Many of the details of this ap-
proach remain to be worked out.

e Level 3: This level incorporates additional infor-
mation on the the adjacency of surfaces for each
pair of primitives connected by a relation at level 2.
That is, it counts the number of mismatched (i.e.,
has different adjoining) surfaces. It is assumed that
unique number is assigned to each surface in each
primitive before the identification occurs. There-
fore, the distance reflects the similarity in terms
of the number of correct adjoining surfaces of the
scene and models.

e Level 4: This level might consider the relative size
of primitive pairs (scaling). The GDM at this level
yields roughly speaking, the normalized summed
difference in relative sizes of primitives in the scene
with respect to the model.

e Level 5: This level might consider the distance be-
tween the centers of primitive pairs are considered.

e Level 6: This level might consider the difference
between the solid angles subtended between pairs
of primitives in the scene and the model.

2 Learning

One of the primary objectives of this work is to incor-
porate effective learning mechanisms that enable the
system to incrementally acquire and refine its model
base to meet the task-requirements in a given environ-
ment. The general idea is to have an ordered sequence
of learning operators that correspond roughly to the
different levels in the representational hierarchy. These
operators extract, encode and assimilate segments of
the object in the scene into the model base at the ap-
propriate level of detail. Entirely new GDM-based in-
ductive learning algorithms as well as adaptations of ex-
isting symbol processing, connectionist, as well as sta-
tistical learning methods are being developed for this
task (for a discussion of such methods, see Honavar,

1992a; Honavar, 1993).

3 Summary

In this paper, we have proposed a framework for task
and data-driven inductive and incremental construction
of parsimonious structured hierarchical representations
of 3-dimensional objects using connectionist-like learn-
ing algorithms that extract, abstract, encode and tune

information-rich substructures from the environment.
Ongoing research is aimed at the development and eval-
uation of prototype systems for 3-dimensional object
recognition and description. The insights gained from
the study will be used to further refine and extend the
framework. This is part of a broad research agenda
whose long-term objective is the development of pow-
erful learning mechanisms that exploit the strengths of
multiple representations as appropriate for the task at

hand.
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