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Abstract. A machine learning-based approach to the prediction of molec-
ular bioactivity in new drugs is proposed. Two important aspects are con-
sidered for the task: feature subset selection and cost-sensitive classifica-

tion. These are to cope with the huge number of features and unbalanced
samples in a dataset of drug candidates. We designed a pattern classifier
with such capabilities based on information theory and re-sampling tech-
niques. Experimental results demonstrate the feasibility of the proposed
approach. In particular, the classification accuracy of our approach was
higher than that of the winner of KDD Cup 2001 competition.

1 Introduction

Drugs consist of small organic molecules that achieve their desired activity by
binding to a target site on a receptor. The first step in the discovery of a new drug
usually involves identifying and isolating the receptor to which it should bind,
followed by testing many small molecules for their ability to bind to the target
site. This leaves researchers with the task of determining what separates the
active (binding) compounds from the inactive (non-binding) ones [1]. Machine
learning can thus be an appropriate choice for the classification task.

In general, the problem of analyzing structure, function, and localization of
biological data can be solved by classifying feature patterns of the data [2]. We
can understand and identify key characteristics of data by classifying feature
vectors. However there might be several issues we need to consider when using
classification algorithms for biological data (including the dataset for drug design
used in this paper). First, a dataset can contain a number of irrelevant, redundant
features. In this case, including inappropriate feature can make the classification
result less accurate. Second, the examples in the training set might not be drawn
from the same distribution where the test examples are drawn. Furthermore, the
class distribution of patterns (i.e. number of patterns in each class) can be quite
biased. Third, the number of patterns in a dataset is relatively much smaller
than the number of features, which incurs high chance of over-fitting.
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We aim to produce an efficient classifier for biological data using a decision
tree learning algorithm. Our classifier is designed considering the three issues
mentioned above: feature subset selection, cost-sensitive classification, and over-

fitting avoidance. By feature selection, irrelevant, redundant features are elimi-
nated to produce a subset with relevant features only. Since most of biological
data consist of very large number of features, feature selection is important. It is
also necessary to consider non-uniform costs for misclassification. For instance,
predicting a good drug target as mediocre will be more expensive than predicting
a mediocre as good. In addition, it is also important to check how well a train-
ing set reflects the distribution of real world data, especially when the training
set is relatively small compared to the instance space. Preventing over-fitting
is thus also of interest. Against this background, we introduce a decision-tree
based classifier using entropy-based feature selection, re-sampling-based cost-
sensitive classification, and cross-validation-based stopping criterion, and verify
its outstanding performance with real-world biological data (from KDD Cup
2001 competition) which will be described in detail in Section 2.3.

2 Related Work

This section briefly introduces related techniques for feature subset selection and
cross-validation, and summarizes proposed approaches in KDD Cup 2001.

2.1 Feature Subset Selection

A number of approaches to feature subset selection have been proposed in the
literature [3][4][5]. These approaches involve searching for an optimal subset of
features based on some criteria of interest. Feature selection algorithms can be
broadly classified into the following three categories according to the character-
istics of the search strategy employed: exhaustive search, heuristic search, and
randomized search [6]. Exhaustive search strategy is most appropriate when the
number of features is sufficiently small, since it finds the optimal feature subset.
However, statistical heuristics [7][8][9] or randomized heuristics [6][10][11][12] are
used commonly since there are too many features in most cases. Each strategy
has advantages as well as disadvantages in a specific domain. In many cases,
however, as large as search space becomes, statistical heuristics may become
more reasonable than randomized heuristics because of the relatively low com-
putational cost.

2.2 Cross-Validation for Accuracy Estimation

There are several methods to validate the learning model. One of the most widely
used techniques is k-fold cross-validation. In k-fold cross validation, training
data are partitioned into disjoint k folds of the same size. Then the classification
accuracy for each fold is computed as follows: At each time, one of the k folds is
used as a validation set and the others as a training set. The average accuracy of



k-run is called k-fold cross-validation accuracy. It is known that cross-validation
can make reliable prediction on unknown test set [13]. Generally, 10-fold cross-
validation yields the best performance in accuracy estimation [14].

2.3 KDD Cup 2001

KDD Cup 2001 is focused on data from genomics and drug design [1]. Among
the tasks, Task 1 is about the prediction of molecular bioactivity for design-
ing a hemostatic. The dataset used here is thrombin dataset (also used in our
experiments), and it has various representative characteristics of biological data.

The training set consists of 1,909 compounds (i.e. samples or patterns) tested
for their ability to bind to a target site on thrombins - a key receptor in blood
clotting. Among the compounds, 42 are active (i.e. binds well to the target site)
and the others are inactive. Each compound was described by a single feature
vector comprised of a class value (A for active, I for inactive) and 139,351 binary
features that describe three-dimensional properties of the molecule [1]. The test
set contains 636 additional compounds that were in fact generated based on the
assay results recorded for the training set. Therefore the test set has a different
class distribution from the training set.

In KDD Cup 2001 competition, a total of 114 groups submitted predictions
for Task 1, the thrombin binding problem. In evaluating the accuracy, an av-
erage cost model was used, since the data set contains much less active classes
than inactive ones. In other words, the average of true positive and negative
accuracies (i.e. weighted average accuracy) is used for assessing the performance
of classifier [1]. The winner of task 1 achieved 71.1% of test accuracy, and 68.4%
of weighted average accuracy [1]. And the second place winner achieved 72% of
test accuracy and 64.3% of weighted average accuracy.

3 Our Approaches

3.1 Feature Subset Selection using GINI Index

Although there are many sophisticated feature subset selection techniques, we
just employed a simple statistical heuristic to reduce the computational cost. The
proposed technique is composed of the following steps: 1) Information gains are
computed to measure the amount of information that each feature contains. 2) A
feature subset which consists of features that have information gain above specific
threshold δ is created. The 10-fold cross-validation accuracy is then computed
using C4.5 algorithm for the dataset considering selected features only. (details
on optimality check is explained in Section 3.3.) The process terminates if the
feature subset satisfies stopping criterion; otherwise step 2) is repeated with a
decreased value of δ.

Generally, the information gain means Shannon’s information gain [15], but
this can be formulated with other information measures (e.g. chi-square, GINI
index, etc. [15]). Since the computational cost of GINI index is less than that of



Shannon’s entropy, we used GINI index to calculate the information gain. GINI
index is defined as

G(S) = 1 −

c∑

i=1

p2
i

where, c is the number of class, and pi is the proportion of S belonging to class
i. The information gain is defined as

IG(S,A) = G(S) −
∑

v∈V alues(A)

|Sv|

|S|
G(Sv)

where, V alues(A) is the set of all possible values for feature A, and Sv is the
subset of S for which feature A has value v.

A feature with larger information gain contains more information that needed
to predict classes. Therefore, we can organize features according to their infor-
mation gain in a decreasing order and form subsets from the top. In the case
of biological data with large number of features, most of the features are often
meaningless. Thus, it is possible to obtain an optimum feature subset without
irrelevant features by selecting features with high information gain.

3.2 Bootstrap

In the case of thrombin data, relatively small active examples are included in the
training set. Therefore, a feature with high discrimination capability on active
examples can have small information gain. Since misclassification cost of the
active example is higher than the inactive one, an appropriate technique —re-

sampling technique in this paper— should be developed.
We can define a cost-weighted information gain by re-sampling the active

examples of original data. To be precise, we just duplicate the active examples
at a certain rate. When we compute the information gain (i.e. in the process of
the feature subset selection), we use the re-sampled data of active examples. Even
though we manage to decrease the information gain of a feature that is important
in predicting the inactive class, the information gain of the features with high
discrimination capability on the active class have increased. This means that we
can obtain a feature subset which consists of features that can predict the class
with high misclassification cost.

3.3 Cross-Validation for Deciding Optimal Feature Subset

In Section 3.1 we mentioned that in order to find out whether a feature subset,
which was produced by the value of δ, is an optimal one, we use 10-fold cross-
validation. If we decide a point that has highest cross-validation accuracy as
an optimum, then there would be high chance for biological data to be over-
fitted [13]. This is because the training set occupies only a small portion of the
instance space and therefore not sufficient enough to represent the instance space.
So the result that is optimized on the training set might have high accuracy of



itself but it can produce bad result on the real test set. This implies that we
need an alternative criterion to avoid over-fitting.

When the number of features included in the feature subset increases, due
to decrease of threshold δ, we can see that the cross-validation accuracy also
increases. But since most of the features of biological data are often irrelevant
ones, the steep improvement of cross-validation accuracy only takes place until
relevant features are included in the subset at the beginning. At later times,
the improvement of cross-validation accuracy becomes steady even though fea-
tures with smaller information gain are included. Therefore, the increase rate
of subset’s cross-validation accuracy becomes close to 0 or begins to fluctuate.
From these facts, we can say that the point, where nothing changes or begin
fluctuating, is the time when irrelevant features are included. For this reason,
we use first optimum point of cross-validation to decide optimal feature subset.
If the accuracy holds up in a similar level, choosing small features may yield
more general prediction without over-fitting.

4 Experiments

To demonstrate the feasibility of proposed approaches, we conducted two experi-
ments. The first one is to find out how well the proposed feature subset selection
technique performs and whether the optimality check of the feature subset is
suitable for biological data. In the second experiment, we focused on how well
we can consider the misclassification cost by using example re-sampling tech-
nique. In each experiment, we obtained the accuracy by using C4.5 Algorithm
and we had used weighted average accuracy (see Section 2.3) to consider the
misclassification cost. The dataset used was thrombin training (introduced in
Section 2.3) set and test set respectively.

4.1 Cross-Validation and Test Accuracies (without Re-sampling)

We first, using thrombin training set, computed each information gain of the
features and organized a feature subset by selecting features with highest infor-
mation gain. We set up the threshold to have value between 0.014 and 0.0055
and set the interval to decrease by 0.0005. The initial threshold value and the
interval are determined by the characteristic of the data so we can say the value
is arbitrary. The number of feature subset generated was 17 and the number of
features in each feature subset was between 5 and 2932. Next, we computed the
10-fold cross-validation accuracy of the feature subset and as the cross-validation
accuracy changed, we determined the optimal feature subset by using the crite-
rion we presented in Section 3.3. The cross-validation accuracy of the training
set is depicted in Fig. 1 (bold line).

In the figure, we can see that the accuracy of the feature subset monotonically
increases until point 49. But at point 83, the accuracy becomes smaller compare
to point 49 and after point 83 we can see that the accuracy fluctuates with
similar values. Therefore, if we use the previous criterion, we can make the
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Fig. 1. Cross-validation and Test Accuracies (without Re-sampling)

optimal feature subset to be the subset with 49 features. Next, to verify whether
the determined feature subset is an optimal one, we measured the test accuracy
of the feature subset. The result is also depicted in Fig. 1 (thin line).

We can see that the change of test accuracy is similar to the one of cross-
validation accuracy. But feature subset with highest cross-validation accuracy
does not produce the highest test accuracy. As we can see, feature subset with 49
features produces the highest test accuracy compared to the one with 31 features.
The feature subset shows that it is identical with the previously determined
optimal subset and this implies that the criterion we used to determine the
optimal subset was appropriate. By using the feature subset, we acquired test
accuracy of 75.39% (unweighted) and weighted average accuracy of 67.55%.

4.2 Accuracies of Feature Subset with Re-sampling

In the second experiment, we tried to verify whether we could improve the
accuracy when using re-sampling technique. First, to determine a suitable ratio
of re-sampling, we generated feature subset by using various value of re-sampling
ratio. The value used here is between 2 and 8. (i.e. we duplicated active examples
by multiples of 2 through 8). Also, we computed the cross-validation accuracy
of the subset generated by the method described. From the result, we discovered
that when the re-sampling ratio was 3 or higher, there was a steep decline of
cross-validation accuracy. Therefore, we had omitted the result and instead, in
Table 1, we have shown the cross-validation accuracy of the subset that was
generated by using re-sampling ratio 2 and 3.

In the table, we can see that the approach that did not use re-sampling
tends to be better when the number of features considered are small. But as the

Table 1. Cross-Validation Accuracy according to Re-sampling Ratio

Number of Features without Re-sampling Re-sampling P*2 Re-sampling P*3

31 73.68 % 55.95 % 55.95 %
49 74.89 % 55.95 % 55.95 %
83 72.40 % 72.19 % 70.50 %
216 74.92 % 78.20 % 68.50 %



number of features being considered increase (i.e. more than 83 features), the
cross-validation accuracy when re-sampling ratio is 2 tends to be higher than
others. Generally, the cross-validation accuracy is in the highest when the ratio
is 2, so we generated several feature subsets fixing the ratio to 2. We computed
the cross-validation accuracy of each feature subset and depicted the result in
Fig. 2 (bold line).
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Fig. 2. Cross-Validation and Test Accuracies (Re-sampling Ratio 2)

In Fig. 2, we can see that the fluctuation of cross-validation accuracy is larger
than the one without using re-sampling. However, as in the case that did not
use re-sampling, the improvement of cross-validation accuracy occurs only until
a certain level. From the result, we can determine the feature subset with 83
features or 216 features as an optimal feature subset. To verify whether the
determined feature subset is optimal, we measured the test accuracy of each
subset. The result is also shown in Fig. 2 (thin line).

The result shows that we acquired the highest accuracy when the subset has
83 features and the second highest accuracy when the subset has 216 features, as
we had expected. It can be confirmed that both two subsets yield good test ac-
curacy, although there were difficulties to decide optimal subset clearly, because
of the fluctuation of cross-validation accuracy. When the number of features in
the subset is 83 and 216, the test accuracy (unweighted) is 80.28% and 79.02%.
Also weighted average accuracy is 72.13% and 71.08%, respectively. There is
significant improvements comparing this result with KDD Cup 2001 winner, in
both unweighted accuracy and weighted average accuracy.

5 Conclusion

In this paper, we proposed approaches to handle the issues of feature subset

selection, cost-sensitive classification, and over-fitting avoidance to solve the
problems of classifying large dimensioned, imbalanced, and non-representational
data, which are the characteristics of most biological data. These techniques
are already in use in different fields, but the significance of this paper is that
we have shown how to effectively classify complex biological data only using the
simple techniques. Experiments with thrombin data are conducted and produced
outstanding results.



The performance of the winner in KDD Cup 2001 (Task 1) is an unweighted
accuracy of 71.1% and weighted average accuracy of 68.4%. Through the pro-
posed methods in this paper, we can achieved significant improvement in both
of unweighted accuracy of 80.28% and weighted average accuracy of 72.13%. In
many problems of classifying large dimensional, biased, and non-representative
data, this entropy-based feature subset selection and accuracy estimation using
cross-validation techniques can be used for good data-preprocessing as well as
accurate classification.
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