DistAl: An Inter-pattern Distance-based
Constructive Learning Algorithm

Jihoon Yang, Rajesh Parekh and Vasant Honavar *
Artificial Intelligence Research Group
Department of Computer Science
226 Atanasoft Hall
[owa State University

Ames, TA 50011. U.S.A.

{yang|parekh|honavar}@cs.iastate.edu

Abstract

Multi-layer networks of threshold logic units offer an attractive framework for the
design of pattern classification systems. A new constructive neural network learning
algorithm (DistAl) based on inter-pattern distance is introduced. DistAl constructs
a single hidden layer of hyperspherical threshold neurons. Each neuron is designed
to exclude a cluster of training patterns belonging to the same class. The weights
and thresholds of the hidden neurons are determined directly by comparing the inter-
pattern distances of the training patterns. This offers a significant advantage over
other constructive learning algorithms that use an iterative (and often time consum-
ing) weight modification strategy to train individual neurons. The individual clusters
(represented by the hidden neurons) are combined by a single output layer of threshold
neurons. The speed of DistAl makes it a good candidate for datamining and knowledge
acquisition from very large datasets. The paper presents results of experiments using
several artificial and real-world datasets. The results demonstrate that DistAl compares
favorably with other neural network learning algorithms for pattern classification.

Keywords: neural networks, constructive learning algorithms, pattern classification

*This research was partially supported by the National Science Foundation (through grant TRI-9409580)
and the John Deere Foundation.

1 Introduction

Trainable pattern classifiers find a broad range of applications in data mining and knowl-
edge discovery [1, 2], intelligent agents [3, 4], diagnosis[5], computer vision [6], and automated
knowledge acquisition [2, 7, 8, 9] from data. Multi-layer networks of threshold logic units
(TLU) [10, 11, 12, 13, 14, 15] offer an attractive framework for the design of trainable pattern
classification systems for a number of reasons including: potential for parallelism and fault
and noise tolerance; significant representational and computational efficiency over disjunctive
normal form (DNF) expressions and decision trees [11]; and simpler digital hardware imple-
mentations than their continuous counterparts such as sigmoid neurons used in networks
trained with error backpropagation algorithm [16, 17].

A TLU implements an (N — 1)-dimensional hyperplane which partitions N-dimensional
Euclidean pattern space into two regions. A single TLU neural network is sufficient to classify
patterns in two classes if they are linearly separable. A number of learning algorithms that
are guaranteed to find a TLU weight setting that correctly classifies a linearly separable
pattern set have been proposed in the literature [11, 18, 19, 20, 21, 22, 23, 24]. However,
when the given set of patterns is not linearly separable, a multi-layer network of TLUs
is needed to learn a complex decision boundary that is necessary to correctly classify the
training examples.

Broadly speaking, there are two approaches to the design of multi-layer neural networks

for pattern classification:

o A-priori fized topology networks: the number of layers, the number of hidden neurons
in each hidden layer, and the connections between each neuron are defined a-priori for
each classification task. This is done on the basis of problem-specific knowledge (if
available), or in ad hoc fashion (requiring a process of trial and error). Learning in
such networks usually amounts to (typically error gradient guided) search for a suitable

setting of numerical parameters, weights in a weight space defined by the choice of the

network topology.

o Adaptive topology networks: the topology of the target network is determined dynami-
cally by introducing new neurons, layers, and connections in a controlled fashion using
generative or constructive learning algorithms. In some cases, pruning mechanisms that
discard redundant neurons and connections are used in conjunction with the network

construction mechanisms [25, 26].

Constructive algorithms offer the following advantages over the conventional backpropa-

gation style learning approaches [12, 15, 27, 28]:

e They obviate the need for an ad-hoc, a-priori choice of the network topology. Instead,
they determine the network topology dynamically to give high chance of producing

optimal (or minimal size) network.

e They are guaranteed to converge to zero classification errors on all finite and non-

contradictory datasets.

e They use elementary threshold logic units (TLU) that are trained using the perceptron

style weight update rules.
e They do not involve extensive parameter fine tuning.

e They provide a natural framework for exploiting problem-specific knowledge into the
initial network configuration or heuristic knowledge (e.g., about the general topological

constraints on the network) into the network construction algorithm [29].

Several constructive algorithms that incrementally construct networks of threshold neurons
for 2-category pattern classification tasks have been proposed in the literature. These include
the tower [30, 31|, pyramid [31], tiling [32], upstart [33], perceptron cascade [34], and
sequential [35]. Recently, provably correct extensions of these algorithms to handle multiple

output classes and real-valued pattern attributes were proposed (see [12, 13, 14]). With

the exception of the sequential learning algorithm, these constructive learning algorithms
are based on the idea of transforming the hard task of determining the necessary network

topology and weights to two subtasks:

e Incremental addition of one or more threshold neurons to the network when the existing

network topology fails to achieve the desired classification accuracy on the training set.

e Training the added threshold neuron(s) using some variant of the perceptron training
algorithm (e.g., the pocket algorithm [11]) to improve the classification accuracy of

the network.

In the case of the sequential learning algorithm, hidden neurons are added and trained by an
appropriate weight training rule to exclude patterns belonging to the same class from the rest
of the pattern set. The time-consuming, iterative nature of the perceptron training algorithm
(though considerably faster than the corresponding error guided backpropagation training)
often makes the use of such algorithms impractical for very large datasets (e.g., in largescale
datamining and knowledge acquisition tasks), especially in applications where reasonably
accurate classifiers have to be learned in almost real time. Similarly, hybrid learning systems
that use neural network learning as the inner loop of a more complex optimization process
(e.g., feature subset selection using a genetic algorithm where evaluation of fitness of a
solution requires training a neural network based on a subset of input features represented
by the solution and evaluating its classification accuracy [36, 37, 38]) call for a fast neural
network training algorithm.

Instance-based learning (IBL) [39, 40, 41, 42] is an approach to learning in which the
learning algorithm typically stores some or all of the training examples as prototypes. Each
prototype is stored as an ordered pair (X, ¢) where X is a pattern represented in some chosen
instance language (typically, in the form of a vector of attribute values), and ¢ is the class
to which X belongs. Such a system, when used to classify a new pattern Y, uses some

distance function (e.g., Euclidean distance in the case of real-valued patterns) that computes

the distance of Y from each stored prototype and predicts the classification of Y using
the known classification of the nearest prototype (or prototypes). Such algorithms, also
referred to as nearest neighbor techniques have been investigated by researchers in pattern
recognition [43, 44, 45], case-based reasoning [46, 47, 48], artificial neural networks [49],
cognitive psychology [50, 51], and text classification [52]. Such distance-based techniques
are also related to radial basis function networks [28, 53, 54, 55].

We present a new constructive neural network learning algorithm (DistAl), which can
be viewed as a variant of the instance-based, nearest-neighbor, and radial-basis function-
based approaches to pattern classification. DistAl replaces the iterative weight update of
neurons that is typically used in constructive learning algorithms by a comparison of pair-
wise distances among the training patterns. Since the inter-pattern distances are computed
only once during the execution of the algorithm our approach achieves a significant speed
advantage over other constructive learning algorithms.

The rest of the paper is organized as follows: Section 2 describes DistAl. Section 3 presents
the results of various experiments designed to evaluate the performance of neural networks
trained using DistAl on some benchmark classification problems. It also presents the results of
experiments using DistAl in conjunction with a genetic algorithm-based approach to feature
subset selection on several benchmark problems as well as a document classification task.

Section 4 concludes with a summary and discussion of some directions for future research.

2 DistAl: A New Constructive Learning Algorithm

DistAl differs from other constructive learning algorithms mentioned above in two respects:

o It uses spherical threshold units — a variant of the TLU — as hidden neurons. The
regions that are defined (or separated) by TLUs are unbounded. This motivates us
to use spherical threshold units that cover locally bounded regions [8]. A spherical

threshold neuron ¢ has associated with it a weight vector W, two thresholds — 6, ;,,, and

0; high, and a suitably defined distance metric d. It computes the distance d(W;, X?)
between a given input pattern X? and W;. The corresponding output of = 1 if 8; ., <
d(W;,X?) < 0, pigr and 0 otherwise. The spherical neuron thus identifies a cluster
of patterns that lie in the region between two concentric hyperspherical regions. W;
represents the common center and 8; 1,,, and 8; ;45 respectively represent the boundaries

of the two regions.

e DistAl does not use an iterative algorithm for finding the weights and the thresholds.
Instead, it computes the inter-pattern distance once between each pair of patterns
in the training set and determines the weight values for hidden neurons by a greedy
strategy (that attempts to correctly classify as many patterns as possible with the
introduction of each new hidden neuron). The weights and thresholds are then set

without the computationally expensive iterative process (see Section 2.2 for details).

The use of one-time inter-pattern distance calculation instead of (usually) iterative, ex-
pensive and time-consuming perceptron training procedure makes the proposed algorithm
significantly faster than most other constructive learning algorithms. In fact, the time and
space complexities of DistAl can be shown to be polynomial in the size of the training set (see
Section 2.6 for details). This makes DistAl particularly well-suited for largescale datamining

tasks.

2.1 Distance Metrics

Each hidden neuron introduced by DistAl essentially represents clusters of patterns that
fall in the region bounded by two concentric hyperspherical regions in the pattern space.
The weight vector of the neuron defines the center of the hyperspherical regions and the
thresholds determine the boundaries of the regions (relative to the choice of the distance
metric used). The choice of an appropriate distance metric for the hidden layer neurons

is critical to achieving a good performance. Different distance metrics represent different

notions of distance in the pattern space. They also impose different inductive biases [7, 8]
on the learning algorithm. Consequently, many researchers have investigated the use of
alternative distance functions for instance-based learning [6, 44, 52, 56, 57]. The number
and distribution of the clusters that result from specific choices of distance functions is a
function of the distribution of the patterns as well as the clustering strategy used. Since
it is difficult to identify the best distance metric in the absence of knowledge about the
distribution of patterns in the pattern space, we chose to explore a number of different
distance metrics proposed in the literature.

The distance between two patterns is often skewed by attributes that have high values.
Normalization of individual attributes overcomes this problem in the distance computation.
Normalization can be achieved by dividing each pattern attribute by the range of possible
values for that attribute, or by 4 times the standard deviation for that attribute [57].

Normalization also allows attributes with nominal and /or missing values to be considered
in distance computation. The distance for attributes with nominal values (say with attribute

values and y) is computed as follows [57]:
e Overlap: dy(z,y)=0if x = y; 1 otherwise.

o Value difference:

C q
d z.y) = a,z,c a,y,c
(@ Y) ; Now N,

where
— Nuz(Ngy): number of patterns in the training set that have value z(y) for at-
tribute a

— Nuzo(Naye): number of patterns in the training set that have value z(y) for

attribute a and output class ¢
— ('@ number of output classes

— ¢: a constant (Euclidean: 2, Manhattan: 1)

If there is a missing value in either of the patterns, the distance for that component (of the
entire pattern vector) is taken to be 1.

Let XP = [X7, -+, X?] and X? = [X],---, X{] be two pattern vectors. Let max;, min;
and o; be the maximum, minimum, and the standard deviation of values of the ith attribute
of patterns in a dataset, respectively. Then the distance between X? and X9, for different

choices of the distance metric d is defined as follows:

1. Range, value-difference based Euclidean:

n_ xP_ x?

lelu

)2 or dua(X7, X7

n = max; — min;

2. Range, value-difference based Manhattan:

Iy Ao g xr, x)
n

3. Range, value-difference based Maximum Value:

XP _ X1

max g0 X))
i mar; — min;

Similarly, 4 * o; can be used instead of max; — min; for standard deviation based

metrics, and d,(X7, X]') can be used instead of d,4(X7, X}') for overlap based metrics

in above formulas.

4. Dice coeflicient:
23, XPX]

1 —
i (XT)? + s (X)?

5. Cosine coeflicient:

1 o ?:1 szqu
VI (X)) T, (X)?

6. Jaccard coeflicient:

i XX
E?:l (sz)2 + E;(L:l (qu)2 - E;(L:l XZpXZq

1 —

7. Camberra:
by
7| XT + X7

Attribute based clustering:

Occasionally, the values of a single attribute between two bounds (say a;,, and az;) might
exclusively identify patterns belonging to a particular output class. Thus, a hidden neuron
that remembers the name of the attribute ¢ and the two thresholds (a;, and ay;) can be
used to form a cluster of patterns belonging to the same class. We use the attribute based
comparison to obtain homogeneous clusters in conjunction with the inter-pattern distance

based clustering.

2.2 Network Construction

Let S = {X! X2, ..., X"V} represents the N training patterns. DistAl calculates the pair-
wise inter-pattern distances for the training set (using the chosen distance metric d) and
stores them in the distance matrix D. Each row of D is sorted in ascending order. Thus, row
k of D corresponds to the training pattern X* and the elements D[k,] correspond to the
distance of X* to the other training patterns. D[k, 0] is the distance to the closest pattern
and D[k, N] is the distance to the farthest pattern from X*. Simultaneously, the attribute
values of the training patterns are stored in D'. D' is essentially the entire training set
with D[k, i] representing the ith attribute value of the kth training pattern. Each column
(attribute) of D' is sorted in ascending order.

The key idea behind DistAl is to generate a single layer of hidden neurons each of which
separates a subset of patterns in a training set using D (or D’). Then, they are fully connected
to M output TLUs (1 for each output class) in an output layer. The representation of the
patterns at the hidden layer is linearly separable [35]. Thus, an iterative perceptron learning
rule can be used to train the output weights. However, the output weights can be directly
set as follows: The weights between output and hidden neurons are chosen such that each

hidden neuron overwhelms the effect of the hidden neurons generated later. If there are a

total of h hidden neurons (numbered 1,2,..., h from left to right) then the weight between
the output neuron j and the hidden neuron i is set to 2"~ if the hidden neuron 7 excludes
patterns belonging to class j and zero otherwise.

Let W/ be the weights between the /th hidden neuron and inputs. Let W¢ be the
weights between the output neuron for class m and hidden neurons, and W, be the weight
between the output neuron for class m and the {th hidden neuron, respectively. The follow-

ing pseudo-code summarizes the process of network construction:

Initialize the number of hidden neurons: h = 0;
while S # ¢
do

1. Double all existing weights (if any) between hidden and output neurons:

Wo =W?° x2 Vm
2. Increment the number of hidden neurons: h = h + 1

3. Inter-pattern distance based:
Identify a row k of D that excludes the largest subset of patterns in S that belong to

the same class m as follows:

(a) Foreachrow r=1,---, N do

i. Let ¢, and j, be column indices (corresponding to row r) for the matrix D
such that the patterns corresponding to the elements D[r, .|, D[r i, + 1], ...,

Dir, j.] all belong to the same class and also belong to S.
ii. Let ¢, =j, — ¢, + 1 (the number of patterns excluded).
(b) Select k to be the one for which the corresponding ¢y is the largest: k& = arg max, ¢,
(c) Let Sy be the corresponding set of patterns that are excluded by pattern X*,

df,, = Dlk, 1] (distance to the closest pattern of the cluster) and dj, , = D[k, ji]

low

10

(distance to the farthest pattern of the cluster).

4. Attribute based:

Analogously, using D' identify an attribute a that excludes the largest number of
patterns in S that belong to the same output class m (i.e., identify a for which ¢, is
the largest among all attributes.); Let S, be the corresponding set of patterns from S
that are excluded by attribute «a, dj,, and dj,,, be the minimum and maximum values

respectively for attribute ¢ among the patterns in set 5,.
5. if [Inter-pattern distance based] then

(a) Define a spherical threshold neuron with W = X* 0., = df,, Opigr. = df;;,;,-

(b) S=5—-5
else

(a) Define a neuron corresponding to attribute @ with 6,5, = df\, Onign = diigh.
(b) S=5-25,
6. Connect the new hidden neuron to output neurons: W2, = ;W2 =0 Vn#m

end while

2.3 Use of Network in Classification

The outputs in the output layer are computed by the winner-take-all (WTA) strategy. The
output neuron m that has the highest net input produces 1 and all the other neurons produce
0’s. The WTA strategy and the weight setting explained in Section 2.2 guarantee 100%
training accuracy for any finite non-contradictory set of training patterns. (See Section 2.5

for detailed convergence proof).

The generalization accuracy of a test set is computed by the same way. Each test pattern

is fed into the network and the outputs are computed by the WTA strategy. If there is one

11

or more hidden neurons that produce 1 (i.e., there exist one or more hidden neurons that
include the test pattern within their thresholds), the outputs are computed by the WTA
strategy in the output layer. Otherwise (i.e., all hidden neurons produce 0’s and all output
neurons produce 0’s as well), the distance between the test pattern and the thresholds of
each hidden neuron is computed. The hidden neuron that has the minimum distance is
chosen to produce 1. Then the outputs are computed again in the output layer to compare

with the desired classification.

2.4 Example

Although DistAl works on tasks with multi-category real-valued patterns, we will illustrate
its operation using the simple XOR problem. We will assume the use of Manhattan distance

metric. There are four training patterns (S = {X*, X% X? X*}):

input class
Xt 0 0 A
X% 0 1| B
X% 1 0| B
X+ 1 1| A

This yields the following distance matrix after sorted:
0112

0112
0112

0112

The first row of the matrix is the distance of X!, X2, X? and X* from pattern X!. The
second row of the matrix is the distance of X? X!, X* and X? from X?. The third row of
the matrix is the distance of X3, X!, X* and X? from X?3. The last row of the matrix is the

distance of X* X% X? and X! from X*.

12

X! excludes the maximum number of patterns from a single class (i.e., Sy = {X?* X?},
class = B). A hidden neuron is introduced for this cluster with W2 = [0 0], 010 = Opign =
LLWg, = LLW3, = 0. X? and X® are now eliminated from further consideration (i.e.,
S =S5 -8, = {X'X*}) The remaining patterns (S, = {X', X*}, class = A) can be
excluded by any pattern (say, X! again) with another hidden neuron with W% = [0 0], 0},,, =
0,0n0n =2, W5, =1, W5, =0,W3, = W5, x2=0,W5, = W3, *2 =2. Now the algorithm
stops since the entire training set is correctly classified (i.e., S = S — S; = ¢). Figure 1

shows the network construction process.

output

hidden

input

() after the first neuron is introduced (b) after the second neuron is introduced
(final network)

Figure 1: Process of Network Construction for the Example in DistAl

2.5 Convergence Proof

Theorem:

Given a finite non-contradictory set of training examples £, DistAl is guaranteed to converge
to zero classification error after adding a finite number (h) of hidden neurons, where h < |E|.
(In practice, h < |E]).

(Proof)

Let Z; be the set of patterns that are excluded by 2th hidden neuron. Each hidden neuron

13

finds the largest subset of patterns to be excluded. DistAl keeps introducing a hidden neuron
until S becomes an empty set (i.e., S = S — Z;). Since S = {X!,--- XV} is the training set
with the cardinality of N, h = |Z1, Z3, -+, Zy| < N where Z,, is the last subset of patterns
to be eliminated. It is clear that at least one pattern (X?) can be excluded by a new hidden
neuron 7 with W# = X? and 0 thresholds. ! Since there are a finite number of patterns in
the training set, and since each added hidden neuron is guaranteed to correctly classify a
non-empty subset of the training set which is then eliminated from further consideration, no
more than |F| hidden neurons are needed.

The internal representation of the hidden layer for a pattern X? (which is a member of

the ith cluster) has the form
Hp:(ovoa"'vovla*a"'v*) (1)

(it has 0’s in the first ¢ — 1 hidden neurons, 1 in the ¢th hidden neuron and either 0 or 1
in the remaining hidden neurons) for a network with ~ hidden neurons. The weights from

hidden to output neurons are set directly as explained in Section 2.2:

e 2=t if j is the right class of hidden neuron i
i

0 otherwise

Consider a pattern X? which belongs to the subset Z; of patterns excluded by the :th
hidden neuron that represents the pattern X*. Let c¢; be the classification of X*. Then
Ws. > W Vj # 1. Also, the internal representation (1) guarantees the net input of output
neuron j to be larger than that of any other output neuron. Consequently, X? is correctly
classified in the output layer by the WTA strategy. As an example, assume H? = (1,1,1)
for a pattern X? belonging to class A, and the hidden neurons represent clusters for class

A, B and B, respectively. Then, when X7 is fed into input neurons, the net input to the

INote that this is not always true for maximum value distance metric and attribute-based approach.
That is because there can be many patterns of different classifications that have the same maximum val-
ues/attributes values. Therefore, the convergence proof given here and the complexity analysis in Section 2.6
apply to distance-based approaches (excluding Maximum value metric), but not attribute-based approach.

14

output neuron for class A will be 2371 = 4 and that to the output neuron for class B will be
2372 4 2373 = 3. Thus, X? will be correctly classified as class A.
Therefore, DistAl is guaranteed to converge to zero classification error after adding a finite

number of hidden neurons for a finite non-contradictory set of training examples. a

2.6 Complexity Analysis

This section presents the complexity analysis for DistAl. The complexity analysis assumes
that network construction is based on a single distance metric.

Let N, be the number of training patterns and N, be the number of attributes in a
dataset, respectively. Let N,,; be the number of output neurons. Assume N,,; > Ny and

Npat > max[Noys, h].

2.6.1 Time Complexity

Computing and sorting the distance matrix D takes O(maz[N?

pat NattvN;at + log Npat]). :
Now, consider the pseudo-code given in Section 2.2. Step 1 takes O(N,y: - h). Step 2 takes
O(1). Step 3 takes O(N7,,) because we need to go through the entire matrix D to determine
Sk. @ Step 5 takes O(N,qt) to update S. Step 6 takes O(N,y:). Thus, the while loop takes

O(N?

o) in the worst case. Therefore, the overall worst-case time complexity is O(N},,).

In practice, DistAl runs significantly faster than the worst-case time complexity because it

eliminates a subset of elements from the original training set instead of a single pattern.

2.6.2 Space Complexity

The space requirement for the input patterns and their targets is O(Npqs - [Natt + Nowt]). The

weights require O(N,yy; - h + h - Ni,). The distance matrix requires O(N2

pat

). Thus, the total

space complexity is O(N2,,).

2Computation of D’ in attribute-based approach takes only O(Natt - Npatlog Npat) because distance
computation is not necessary.

3Step 4 is not considered here because it is used only with the attribute-based metric. The time required
for step 4 is comparable to the time required for step 3.

15

2.7 Improving the Performance of DistAl Using Feature-Subset Se-

lection

In pattern classification tasks, the choice of features (or attributes) used to represent patterns

affect:

o [ecarning time: The attributes used to describe the patterns implicitly determine the
search space that needs to be explored by the learning algorithm. The larger the search
space, the more time the learning algorithm needs for learning a sufficiently accurate

classification function [7, 58].

o number of examples needed: All other things being equal, the larger the number of
attributes used to describe the patterns, the larger is the number of examples need to

learn a classification function to a desired accuracy [7, 58].

e cost of classification: In many real-world pattern classification tasks (e.g., medical di-
agnosis), some of the attributes may be observable symptoms and others might require
diagnostic tests. Different diagnostic tests might have different costs as well as risks

associated with them.

This presents us with a feature subset selection problem in automated design of pattern classi-
fiers. The feature subset selection problem refers the task of identifying and selecting a useful
subset of attributes to be used to represent patterns from a larger set of attributes. Satis-
factory solution of this problem is particularly critical if instance-based, nearest-neighbor,
or similarity-based learning algorithms like DistAl are used to build the classifier. This is
due to the fact that such classifiers rely on the use of inter-pattern distances which are intri-
cately linked to the choice of features used to represent the patterns. Presence of irrelevant
or misleading features (e.g., social security numbers in a medical diagnosis task) can skew
the distance calculation and hence adversely affect the generalization performance of the

resulting classifier.

16

A detailed discussion of feature subset selection is beyond the scope of this paper. The
interested reader is referred to [37, 38] for discussion of a variety of alternative approaches
to feature subset selection. Since exhaustive search over all possible subsets of features is
computationally infeasible, most approaches make restrictive assumptions (e.g., monotonic-
ity — which states that the addition of features does not worsen classification accuracy) or
use a variety of heuristics. Genetic algorithms [59, 60, 61] offer a particularly promising

approach to feature subset selection for a number of reasons [36, 37, 38|:
e They do not have to rely on the often unrealistic monotonicity assumption.

e They are particularly effective tools for exploring large search spaces for near-optimal

solutions [59, 60, 61].
The use of a genetic algorithm in any search or optimization problem requires:

e choice of a representation for encoding candidate solutions to be manipulated by the

genetic algorithm
e definition of a fitness function that is used to evaluate the candidate solutions
e definition of a selection-scheme (e.g., fitness-proportionate selection)

o definition of suitable genetic operators that are used to transform candidate solutions

(and thereby explore the search space)

e setting of user-controlled parameters (e.g., probability of applying a particular genetic

operator, size of the population, etc.)

In our use of genetic algorithm for feature subset selection for DistAl, each candidate
solution represented a subset of features used to encode patterns as input to DistAl. The
fitness of the candidate solution was computed as the generalization accuracy (computed
using a 10-fold cross-validation) of a classifier constructed using DistAl. Standard mutation

and crossover operators were used on a fixed length binary vector representation of candidate

17

solutions (with a 1 indicating a selected feature). Experiments were run using the rank-based
selection strategy with the following parameter settings: Population size is 50; Number of
generation is 300; The probability of crossover is 0.5; The probability of mutation is 0.01;

The probability of selection of the highest ranked individual is 0.6. (See [37, 38] for detailed

explanations on the experiments).

3 Experimental Evaluation of DistAl

This section presents results of experiments using DistAl on several benchmark problems both
with and without feature subset selection and compares them with the results presented by
Wilson and Martinez in a recent paper [57]. It also presents the performance of DistAl on a

real-world document classification task.

3.1 Datasets

Two artificial datasets (parity and two spirals) and a wide range of real-world datasets
from the machine learning data repository at the University of California at Irvine [62] were
chosen to test the performance of DistAl. DistAl is also used for classifying paper abstracts
and news articles. The paper abstracts were chosen from three different sources: IEEE
Expert magazine, Journal of Artificial Intelligence Research and Neural Computation. The
news articles were obtained from Reuters dataset. Each document is represented in the
form of a vector of numeric weights for each of the words (terms) in the vocabulary. The
weights correspond to the term frequency and inverse document frequency (TFIDF) [63, 64]
values for the corresponding words. The training sets for paper abstracts were generated
based on the classification of the corresponding documents into two classes (interesting and
not interesting) by two different individuals, resulting in two different data sets (Abstractl
and Abstract2). The classifications for news articles were given based on their topics (6, 4

and 8 classes) following [65], resulting in three different datasets (Reutersl,Reuters2 and

18

Reuters3), respectively. Table 1 summarizes the characteristics of the datasets selected for

our experiments.

3.2 Experimental Results

DistAl is deterministic in the sense that its behavior is always identical for a given training
set. Most other constructive learning algorithms are non-deterministic because their behavior
is not always identical in different runs with the same training set and even with the same
learning parameters due to the randomness in selecting initial weights, pattern presentations,

and so on. Therefore, just one run of DistAl per dataset is sufficient to study the performance.

3.2.1 Parity Datasets

The seven, eight and nine-bit parity datasets (P7, P8, P9) were used to evaluate the per-
formance of DistAl in terms of the network size. The Manhattan distance metric was used
to train the entire set of patterns. Table 2 presents the size of the network generated by sev-
eral algorithms. It shows that DistAl is capable of generating compact networks comparable
to other algorithms for non-trivial tasks like the parity problem. Note that DistAl is also
very fast. Since DistAl does not require iterative perceptron training procedure and keeps
eliminating a subset of patterns that are not considered further in the learning process, it

converges significantly fast. 4

3.2.2 Various Datasets from UCI Repository

DistAl was run once for each distance metric to compare the performance in terms of the
generalization accuracy and the network size. A simple pruning technique was implemented

to produce compact networks: When a new hidden neuron is introduced, the generalization

41t is not feasible to make a fair, thorough comparison of speeds of different algorithms. DistAl converged
fairly quickly for almost all datasets. (See Section 2.6 for detailed analysis of time complexity). GA-MLP
[66] is based on a genetic algorithm and thus it usually takes significant amount of time to get a quality
solution. Cascade correlation [67] uses Quickprop [69]. Quickprop uses an iterative gradient descent method
based on a second order heuristic.

19

accuracy of the network is computed. The current best generalization accuracy is stored in
a pocket along with the network size. After the training is completed (i.e., 100% training
accuracy is obtained) or no further training is possible (i.e., the limit of allowable hidden
neurons (currently set to 100) is reached or no more patterns can be eliminated in Maximum
value metric or attribute-based approach), the network with the best generalization accuracy
in the pocket is restored by pruning the unnecessary hidden neurons.

A 10-fold cross-validation was performed for each dataset and its performance was shown
in Table 3. The entries in the tables correspond to means and standard deviations and are
shown in the form mean & standard deviation. An ‘x’ indicates that the distance computation
was not possible (e.g., the denominator might be zero in Camberra metric) and a ‘-’ indicates
that the distance metric was not applicable (e.g., Dice coefficient metric can not be used
for nominal or missing values). As we can see from Table 3, no single distance metric
outperformed other metrics on all datasets. That is because the performance depends on
the distribution of the data. A distance metric might be appropriate for certain kinds of
datasets while it might not for others.

It is impossible to do a thorough and fair comparison between various learning algorithms
since each algorithm has its own optimal parameter settings which is usually unknown and
not feasible to obtain within a reasonable amount of time. Also, the training and test sets
that had been generated and used are not identical in general under the assumption that the
experiments have been done a finite number of times. (An infinite number of experiments
with random partitions of training and test sets from the same distributions of data can
increase the confidence level). Following comparisons should be interpreted in light of those
considerations. The best results of DistAl are compared with the best results in [57]. The
results in [57] are chosen since they are recent and also obtained by a nearest-neighbor
algorithm with a 10-fold cross-validation. Table 4 summarizes the comparison.

As we can see from Table 4, DistAl gave comparable results on most datasets (except

Soylarge and Vowel). In case of Vowel dataset, the nearest neighbor algorithm [57] reports

20

a even higher accuracy than DistAl °

The network size of three algorithms (perceptron cascade [34], cascade correlation [67],
upstart [33]) for the two spirals problem is shown in [34]: 17.8 (perceptron cascade), 15.2
(cascade correlation), 91.4 (upstart). DistAl generated more compact networks with 7.7
hidden neurons.

Table 5 shows that the combination of DistAl and feature subset selection yield fairly
good results. The results indicate that the networks constructed using GA-selected subset
of features compare quite favorably with networks that use all of the features. In particular,
feature subset selection resulted in significant improvement in generalization. For detailed

explanation of implementation, related work and comparisons with other approaches see

37, 38].

3.2.3 Document Datasets

The same experimental setup was used as in Section 3.2.2. Table 6 shows that DistAl gives
fairly good results for document classification as well. It gave reasonably high (over 80%)
generalization accuracy for all datasets. Also, the GA-selected subset of features produced
improved generalization accuracy with slightly larger network size. For detailed explanation

of implementation, related work and comparisons with other approaches see [64].

4 Summary and Discussion

A fast inter-pattern distance-based constructive learning algorithm, DistAl, is introduced
and its performance on a number of datasets is demonstrated. DistAl is different from other
constructive learning algorithms in two aspects. First, it does not require an iterative percep-
tron style weight update rules for determining the connections between neurons. Instead, it
computes the distance (using one of the pre-defined distance metrics) between each pattern

pair and uses it to set the weights (and the thresholds) between hidden neurons and inputs.

5The best results reported in the literature [62] is 56% for Vowel dataset.

21

The weights between the hidden and output neurons are set using a one-shot (as opposed
to iterative) learning algorithm. Thus, DistAl is relatively fast compared in comparison with
most neural network training algorithms that rely on an iterative update of weights and
consequently require multiple passes through the training set. Furthermore, DistAl is guar-
anteed to converge to 100% classification accuracy on any non-contradictory training set for
most of the distance metrics used in this paper. Second, it generates a single hidden layer
composed of hyperspherical threshold neurons instead of threshold logic units. Thus, the
induced network can potentially discover natural clusters that exist in the data.

Despite its simplicity, experiments reported in this paper show that DistAl yields good
performance on almost all real-world datasets that were considered. It also produced good
performance on difficult artificial tasks such as parity and the two spirals data which have
been used by numerous researchers for evaluation of supervised learning algorithms.

DistAl, because of its reliance on inter-pattern distances, is sensitive to the presence of
irrelevant or misleading attributes in the pattern representation. Consequently, its classifi-
cation accuracy can be further improved by incorporating a suitable feature subset selection
algorithm. This is borne out by the experiments using DistAl in conjunction with a genetic
algorithm for feature subset selection [37, 38].

A potential disadvantage of DistAl is its need for maintaining the inter-pattern distance
matrix during learning. The memory needed to store this matrix grows quadratically with
the size of the training set. This problem can be mitigated by freeing the memory for those
patterns that are excluded by a new hidden neuron as learning progresses. It would be
interesting to explore variants of DistAl that can avoid the need for maintaining the entire
inter-pattern distance matrix during learning.

Because of its speed, DistAl is particularly well-suited to many real-world applications in-
volving large amount of data and/or requesting real-time response such as largescale datamin-
ing and knowledge acquisition tasks and hybrid learning systems that use neural network

learning as the inner loop of a more complex knowledge discovery process. An interesting

22

direction for future research is the design of versions of DistAl that can be used to incremen-
tal learning and assimilation of classification knowledge from multiple, distributed, dynamic
data sources. Some preliminary results based on experiments using DistAl to design mobile
agents for text classification and retrieval from distributed document collections are reported
in [64].

Constructive algorithms in general provide an natural framework for exploration of cu-
mulative (life long) learning [70] and for knowledge-based theory refinement [29, 71]. An
interesting direction for future research would be to explore the use of DistAl for this task

using real-world datasets e.g., the genome data used in [29].

References

[1] U.Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge

Discovery and Data Mining. MIT Press, Cambridge, MA, 1996.

[2] V. Honavar. Machine learning: Principles and applications. In J. Webster, editor,
Encyclopedia of Electrical and FElectronics Engineering. Wiley, New York, 1998. To

appear.
[3] J. Bradshaw. Software Agents. MIT Press, Cambridge, MA, 1997.

[4] V. Honavar. Intelligent agents. In J. Williams and K. Sochats, editors, Encyclopedia of

Information Technology. Marcel Dekker, New York, 1998. To appear.

[5] K. Balakrishnan and V. Honavar. Intelligent diagnosis systems. International Journal

of Intelligent Systems, 1998. In press.

[6] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, New York,
1973.

[7] T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.

23

8]
[9]

[10]

[14]

P. Langley. Elements of Machine Learning. Morgan Kaufmann, Palo Alto, CA, 1995.

V. Honavar. Toward learning systems that integrate multiple strategies and representa-
tions. In V. Honavar and L. Uhr, editors, Artificial Intelligence and Neural Networks:

Steps Toward Principled Integration, pages 615-644. Academic Press: New York., 1994.

C-H. Chen, R. Parekh, J. Yang, K. Balakrishnan, and V. Honavar. Analysis of decision
boundaries generated by constructive neural network learning algorithms. In Proceedings

of WONN’95, July 17-21, Washington D.C., volume 1, pages 628-635, 1995.

S. Gallant. Neural Network Learning and Expert Systems. MIT Press, Cambridge, MA,

1993.

R. Parekh, J. Yang, and V. Honavar. Constructive neural network learning algorithms
for multi-category real-valued pattern classification. Technical Report ISU-CS-TR97-06,
Department of Computer Science, lowa State University, 1997. (Submitted for review

to the IEEE Transactions on Neural Networks).

R. Parekh, J. Yang, and V. Honavar. MUpstart - a constructive neural network learning
algorithm for multi-category pattern classification. In Proceedings of the IEEE/INNS

International Conference on Neural Networks, ICNN’97, pages 1924-1929, 1997.

J. Yang, R. Parekh, and V. Honavar. MTiling - a constructive neural network learning
algorithm for multi-category pattern classification. In Proceedings of the World Congress

on Neural Networks’96, pages 182-187, San Diego, 1996.

V. Honavar. Structural learning. In J. Webster, editor, Encyclopedia of Electrical and

Electronics Engineering. Wiley, New York, 1998. To appear.

D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations by error
propagation. In Parallel Distributed Processing: Explorations into the Microstructure

of Cognition, volume 1 (Foundations). MIT Press, Cambridge, Massachusetts, 1986.

24

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

P. Werbos. Beyond Regression: New Tools for Prediction and Analysis in Behavioral

Sciences. PhD thesis, Harvard University, 1974.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386-408, 1958.

N. Nilsson. The Mathematical Foundations of Learning Machines. McGraw-Hill, New
York, 1965.

W. Krauth and M. Mézard. Learning algorithms with optimal stability in neural net-
works. J. Phys. A: Math. Gen., 20:L745-L752, 1987.

J. Anlauf and M. Biehl. Properties of an adaptive perceptron algorithm. In Parallel

Processing in Neural Systems and Computers, pages 153-156. 1990.

M. Frean. Small Nets and Short Paths: Optimizing Neural Computation. PhD thesis,

Center for Cognitive Science, Edinburgh University, UK, 1990.

H. Poulard. Barycentric correction procedure: A fast method of learning threshold
units. In Proceedings of WCNN’95, July 17-21, Washington D.C., volume 1, pages
710-713, 1995.

B. Raffin and M. Gordon. Learning and generalization with minimerror, a temperature-

dependent learning algorithm. Neural Computation, 7:1206-1224, 1995.

R. Reed. Pruning algorithms — a survey. [EEE Transactions on Neural Networks,
4(5):740-747, 1993.

R. Parekh, J. Yang, and V. Honavar. Pruning strategies for constructive neural network
learning algorithms. In Proceedings of the IEEE/INNS International Conference on
Neural Networks, ICNN’97, pages 1960-1965, 1997.

V. Honavar. Generative Learning Structures and Processes for Generalized Connection-

ist Networks. PhD thesis, University of Wisconsin, Madison, 1990.

25

28]

[29]

32]

33]

[34]

[37]

V. Honavar and Uhr. L. Generative learning structures for generalized connectionist

networks. Information Sciences, 70(1-2):75-108, 1993.

R. Parekh and V. Honavar. Constructive theory refinement in knowledge based neural
networks. In Proceedings of the International Joint Conference on Neural Networks,

Anchorage, Alaska, 1998. To appear.

J. Nadal. Study of a growth algorithm for a feedforward network. International Journal

of Neural Systems, 1(1):55-59, 1989.

S. Gallant. Perceptron based learning algorithms. IEEE Transactions on Neural Net-
works, 1(2):179-191, June 1990.

M. Mézard and J. Nadal. Learning feed-forward networks: The tiling algorithm. J.
Phys. A: Math. Gen., 22:2191-2203, 1989.

M. Frean. The upstart algorithm: A method for constructing and training feedforward

neural networks. Neural Computation, 2:198-209, 1990.

N. Burgess. A constructive algorithm that converges for real-valued input patterns.

International Journal of Neural Systems, 5(1):59-66, 1994.

M. Marchand, M. Golea, and P. Rujan. A convergence theorem for sequential learning

in two-layer perceptrons. Furophysics Letters, 11(6):487-492, 1990.

J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In Pro-
ceedings of the Genetic Programmaing Conference, GP’97, pages 380-385, Stanford Uni-

versity, CA, 1997.

J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. IEEFE Fzpert

(Sepcial Issue on Feature Transformation and Subset Selection), 1998. To appear.

26

[38]

[39]

[42]

[43]

[44]

J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In Feature
Extraction, Construction and Selection - A Data Mining Perspective. Kluwer: New

York, 1998. To appear.

D. Aha. Incremental constructive induction: An instance-based approach. In Pro-
ceedings of the Fighth International Workshop on Machine Learning, pages 117-121,

Evanston, 1L, 1991. Morgan Kaufmann.

D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine Learn-
ing, 6:37-66, 1991.

P. Turney. Theoretical analyses of cross-validation error and voting in instance-based
learning. Journal of Experimental and Theoretical Artificial Intelligence, pages 331-360,
1994.

P. Domingos. Rule induction and instance-based learning: A unified approach. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-95),

1995.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13:21-27, 1967.

E. Diday. Recent progress in distance and similarity measures in pattern recognition. In

Proceedings of the Second International Joint Conference on Pattern Recognition, pages

534-539, 1974.

B. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification Techiniques.
[EEE Computer Society Press, Los Alamitos, CA, 1991.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the

ACM, 29(12):1213-1228, 1986.

27

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10(1):57-78, 1993.

J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Francisco, 1993.

G. Carpenter and S. Grossberg. Pattern Recognition by Self-Organizing Neural Net-
works. MIT Press, Cambridge, MA, 1991.

A. Tversky. Features of similiarity. Psychological Review, 84:327-352, 1977.

R. Nosofsky. Attention, similarity, and the identification-categorization relationship.

Journal of Experimental Psychology: General, 115:39-57, 1986.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw Hill,
New York, 1983.

D. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive net-

works. Complex Systems, 2:321-355, 1988.

M. Powell. Radial basis functions for multivariable interpolation: A review. In J. Mason
and M. Cox, editors, Algorithms for Approrximation, pages 143—-167. Clarendon Press,
Oxford, 1987.

F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks archi-

tectures. Neural Computation, 7:219-269, 1995.
B. Batchelor. Pattern Recognition: Ideas in Practice. Plenum Press, New York, 1978.

D. Wilson and T. Martinez. Improved heterogeneous distance functions. Journal of

Artificial Intelligence Research, 6:1-34, 1997.

B. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kauffman, San
Mateo, CA, 1991.

28

[59]

[60]

[61]

[62]

[67]

[68]

[69]

D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, New York, 1989.

M. Mitchell. An Introduction to Genetic algorithms. MIT Press, Cambridge, MA, 1996.

7. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, New York, 3rd edition, 1996.

P. Murphy and D. Aha. Repository of machine learning databases. Department of

Information and Computer Science, University of California, Irvine, CA, 1994.
G. Salton. Developments in automatic text retrieval. Secience, 253:974-979, 1991.

J. Yang, P. Pai, V. Honavar, and L. Miller. Mobile intelligent agents for document
classification and retrieval: A machine learning approach. In 14th Furopean Meeting on
Cybernetics and Systems Research. Symposium on Agent Theory to Agent Implementa-

tion, Vienna, Austria, 1998.

D. Koller and M. Sahami. Hierarchically classifying documents using very few words.

In International Conference on Machine Learning, pages 170-178, 1997.

H. Andersen and A. Tsoi. A constructive algorithm for the training of a multilayer

perceptron based on the genetic algorithm. Complex Systems, 7:249-268, 1993.

S. Fahlman and C. Lebiere. The cascade correlation learning algorithm. In D. Touretzky,

editor, Neural Information Systems 2, pages 524-532. Morgan-Kauffman, 1990.

M. Golea and M. Marchand. A growth algorithm for neural network decision trees.

Furophysics Letters, 12(3):205-210, 1990.

S. Fahlman. Faster-learning variations on backpropagation: an empirical study. In
D. Touretzky, G. Hinton, and T. Sejnowsky, editors, Proceedings of the 1988 Connec-

tionist Models Summer School, pages 38-51. Morgan-Kauffman, 1988.

29

[70] S. Thrun. Lifelong learning: A case study. Technical Report CMU-CS-95-208, Carnegie

Mellon University, 1995.

[71] J. W. Shavlik. A framework for combining symbolic and neural learning. In Artificial
Intelligence and Neural Networks: Steps Toward Principled Integration. Academic Press,

Boston, 1994.

30

Table 1: Datasets used in the experiments. Size is the number of patterns in the dataset,
Dimension is the number of input attributes, Missing? is whether there are any missing
values, and Class is the number of output classes.

Dataset Size Dimension Attribute Type Missing? Class
7-bit parity (PT7) 128 7 numeric No 2
8-bit parity (P8) 256 8 numeric No 2
9-bit parity (P9) 512 9 numeric No 2
two spirals (2SP) 192 2 numeric No 2
annealing database (Annealing) 798 38 numeric, nominal Yes 5
audiology database (Audiology) 200 69 nominal Yes 24
pittsburgh bridges (Bridges) 105 11 numeric, nominal Yes 6
breast cancer (Cancer) 699 9 numeric Yes 2
credit screening (CRX) 690 15 numeric, nominal Yes 2
flag database (Flag) 194 28 numeric, nominal No 8
glass identification (Glass) 214 9 numeric No 6
heart disease (Heart) 270 13 numeric, nominal No 2
heart disease [Cleveland|(HeartCle) 303 13 numeric, nominal Yes 2
heart disease [Hungarian|(HeartHun) 294 13 numeric, nominal Yes 2
heart disease [Long Beach](HeartLB) 200 13 numeric, nominal Yes 2
heart disease [Swiss|(HeartSwi) 123 13 numeric, nominal Yes 2
hepatitis domain (Hepatitis) 155 19 numeric, nominal Yes 2
horse colic (Horse) 300 22 numeric, nominal Yes 2
ionosphere structure (Ionosphere) 351 34 numeric No 2
iris plants (Iris) 150 4 numeric No 3
liver disorders (Liver) 345 6 numeric No 2
monks problems (Monks-1,2,3) 432 6 nominal No 2
pima indians diabetes (Pima) 768 8 numeric No 2
DNA sequences (Promoters) 106 57 nominal No 2
sonar classifiction (Sonar) 208 60 numeric No 2
large soybean (Soylarge) 307 35 nominal Yes 19
small soybean (Soysmall) A7 35 nominal No 4
vehicle silhouettes (Vehicle) 846 18 numeric No 4
house votes (Votes) 435 16 nominal Yes 2
vowel recognition (Vowel) 528 10 numeric No 11
wine recognition (Wine) 178 13 numeric No 3
zoo database (Zoo) 101 16 numeric, nominal No 7
paper abstracts 1 (Abstractl) 100 790 numeric No 2
paper abstracts 2 (Abstract2) 100 790 numeric No 2
news articles 1 (Reuters1) 939 1568 numeric No 6
news articles 2 (Reuters1) 139 435 numeric No 4
news articles 3 (Reuters2) 834 1440 numeric No 8

31

Table 2: Comparison of the network size generated by different algorithms for the parity
datasets. A ‘-” indicates that the result is not reported in the corresponding reference.

Algorithm P7 | P8 | P9
DistAl 5 1 5 | 6
GA-MLP [66] 9 | 15 | -
Perceptron cascade [34] | 3 | 4 | 4
Cascade correlation [67] | 4-5 | 5-6 | -
Upstart [33] 6 | 7| 8
Growth algorithm [68] T 819
Sequential [35] T8 19
Tiling [32] T8 19
Tower [30] 35 4 |45

32

Table 3: Results of various distance metrics (range, value-difference based Euclidean, Man-

hattan and Maximum value metrics). The best generalization accuracy among different

distance metrics are shown in bold face.

Euclidean [r,v]

Manhattan [r,v]

Maximum value [r,v]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 7954+10.1 87415 | 721+£58 85£3.7 | 70.5£89 10.1 £3.7
Annealing | 96.6 £2.0 12.1£24 | 93.3+£28 155£34 | 0.0£0.0 0.0+0.0
Audiology | 66.0+9.7 24.7+48 | 59.0£8.6 26.7£3.0 1.0+ 2.0 0.6+1.2
Bridge 5.0+ 156 3.54+2.1 |59.0+104 32426 |45.0+169 3.4+£1.5
Cancer 978 +1.2 29+1.2 | 975+1.7 39+£14 | 95.1+£15 62451
CRX 87.7+33 T7+£69 | 87.5+38 T3+£43 | 86.4+33 T.7+£35
Flag 63.7+8.0 57+£32 |647+£11.3 6.0+£3.6 | 57.9+58 T.0£2.7
Glass 70.5+85 98+6.9 | 66.2+45 99+6.5 | 67.6+76 10.1 £5.6
Heart 83.7+53 33+£18 | 84.84+48 57+£36 | 8.2+33 T.6+45
HeartCle 85.3+72 46+38 |85.3+34 6.0+29 | 823+45 109+6.7
HeartHun | 84.5+58 6.7+28 | 84.8+56 6.6+2.9 0.0£0.0 0.0+0.0
HeartLLB 785492 50+£35 | 77.5+£6.8 4.9+3.0 0.0£0.0 0.0+0.0
HeartSwi 93.3+33 20+£0.0 | 93.3+£50 2.2+0.8 0.0£0.0 0.0+0.0
Hepatitis 83.3+45 30+£13 | 833+6.2 25+£08 | 79.3+£87 2.0+£0.0
Horse 86.0+3.6 5H3+£45 | 84.7+43 H51+£32 | 63.7+£59 2.0+£0.0
Ionosphere | 93.1 £4.5 6.8+1.4 | 90.0+58 58+2.1 914+42 55+ 1.7
Iris 93.1+45 68+14 | 90.0+£58 58+2.1 91.4+42 55417
Liver 67.7+6.8 T8+45 | 63.5+82 64+£68 | 67.4+53 T.1+£3.7
Monks-1 90.0+£93 74444 | 89.14+£7.7T 74451 82.8+9.1 9.6+4.9
Monks-2 79.8+ 104 84+45 |795£104 13.0+£95 | 82.8+94 64+2.9
Monks-3 991+1.5 30+£00 | 986+19 3.0+£06 | 986+19 2.1+£0.3
Pima 743+32 95+6.7 | 7344+£40 1324£78 | 73.7+52 83+5.0
Promoters | 87.0+11.0 284+04 | 88.0+75 22404 | 8.0+£81 2.8+0.6
Sonar 83.0+78 64+27 | 81.54+9.5 4.8+24 | 785+8.1 7.5 £3.8
Soylarge 81.0+56 202432 | 743493 216450 | 67.7+45 16.7+£2.4
Soysmall 90.0£166 34+£05 [925+£160 3.6+05 |975+75 3.6+£0.5
Vehicle 64.1 £6.5 295+133| 61.7+3.2 259+ 183 | 57.0+£4.7 494 £22.2
Votes 96.1+1.5 32+15 | 954+23 3.7£1.2 | 788+£81 3.6+14
Vowel 65.2+6.9 346+85 | 65.8+64 40.7+85 | 61.7+83 395+ 7.7
Wine 929+£58 434+08 | 929458 4.1+£07 | 941+£64 47406
Zoo 96.0+49 6.1+1.1 | 96.0+80 6.1+£09 | 93.9+£46 6.0+1.2

33

Table 3: Results of various distance metrics (standard deviation, value-difference based
Euclidean, Manhattan and Maximum value metrics).

Euclidean [s,v]

Manhattan [s,v]

Maximum value [s,v]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 83776 TT7T+£18 | 69.5+6.1 71439 | 721+£6.7 8.8+3.1
Annealing | 963 +14 106£28 | 93.9£23 13.7+34| 0.0£0.0 0.0£0.0
Audiology | 66.0+9.7 24.7+£48 | 59.0£86 26.7+3.0| 1.0£2.0 0.6+£1.2
Bridge 56.0+ 174 40436 |59.0+13.0 3.4+£27 [520+14.7 4.0+2.38
Cancer 96.8+£20 40+16 | 96.8+£1.9 45+£26 | 954£1.7 104+44
CRX 874+36 T72+£37 | 87.0+41 T7.0+£45 | 86.4£45 6.1+4.6
Flag 60.5£82 64+46 | 658+95 9.1+£6.2 |55.3+103 11.14+09.2
Glass 68.1+7.7 11.5+7.7 | 66.2+58 73+36 | 69.5+£68 9.5+7.7
Heart 826+50 36+£16 | 8.6+51 47+3.1 | 81.5+£62 7.7+59
HeartCle 81.7+4.8 39427 | 83.7+46 46+33 | 8.7£6.7 56+45
HeartHun | 84.8+64 7.0+4.1 83.1+4.7 55+£34 | 0.0+0.0 0.0£0.0
HeartLLB 76.5+87 33+£28 | 77.5+£6.8 39£25 | 0.04+0.0 0.0£0.0
HeartSwi 94.2+38 22406 |94.2+38 23+09 | 0.0+0.0 0.0£0.0
Hepatitis 84.7+95 624+40 | 84.0+£6.8 46+3.1 | 84.7+95 42418
Horse 83.0+5.7 44+£35 | 8.7+69 79+44 | 63.7£59 2.0+0.0
Ionosphere | 92.9£55 6.9+ 2.1 91.4+£59 58+14 | 926 £4.1 53+1.9
Iris 929+5.5 6.9+2.1 91.3+6.0 33+£1.0 | 940£63 4.0+1.2
Liver 66.5 £ 5.1 99457 | 644+46 106+£83 | 66.2+6.2 11.3+7.6
Monks-1 90.0+93 74444 | 89.14+7.7T T4+£51 | 82.8+09.1 9.6 £4.9
Monks-2 79.8+ 104 84+45 |795£104 13.0+£9.5| 828+94 64+£29
Monks-3 99.1+1.5 30+£00 | 986+19 3.04+06 | 986+19 2.1+0.3
Pima 12+439 10.0+£38 | 76.3+5.1 8.1+£49 | 4.7+£4.0 13.14+10.8
Promoters | 87.0+11.0 28404 | 88.0+7.5 22+£04 | 85.0£8.1 28£0.6
Sonar 73.5+£74 46+3.1 785+£81 48+£21 | 35+£74 56+£3.6
Soylarge 81.0+56 202432 | 743493 21.6+£5.0| 67.7+45 16.7+2.4
Soysmall 90.0£166 34+05 [925+160 3.6+£05 | 97.5+75 3.6+0.5
Vehicle 65.1£4.0 2444+96 | 65.4+35 23.7+£5.0]| 62.1+4.7 529+ 18.6
Votes 96.1+1.5 32415 | 9544+23 3.7£1.2 | 7188£8.1 36+1.4
Vowel 66.7+ 7.5 31.2+£10.1 | 65.0+7.7 363+£85 | 57.9+£88 39.24+13.5
Wine 95.9+46 49403 | 9244+75 444£07 | 929+£58 44409
Zoo 96.0+49 6.1+1.1 | 96.0+80 6.1+£09 | 93.0+£4.6 6.0+1.2

34

Table 3: Results of various distance metrics (range, overlap based Euclidean, Manhattan
and Maximum value metrics).

Euclidean [r,0]

Manhattan [r,0]

Maximum value [r,0]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 79.5+10.1 87+£1.5 72.1 £5.8 85£3.7 | 70.5+£89 10.1 £3.7
Annealing | 94.74+18 14.64+3.6 | 93.2+25 156+£5.0 | 0.0£0.0 0.0£0.0
Audiology | 66.0+10.0 273+74 |66.0+100 273+£74 | 1.0£2.0 06+£1.2
Bridge 60.0+10.0 4.8+3.0 | 60.0£10.0 63£50 |36.0£18.0 10.0+£17.1
Cancer 978+ 1.2 29+£1.2 97.5 £ 1.7 39+1.4 | 95.14+1.5 6.2+£5.1
CRX 83.8+5.3 9.7+5.1 83.9 + 3.8 91+£44 | 61979 56.4+£20.7
Flag 474 4+7.1 6.9+54 | 505+£10.8 103+64 | 24.74+94 2.14+0.3
Glass 70.5+85 9.8+6.9 66.2 + 4.5 99+£6.5 | 67.6+£7.6 10.1 £5.6
Heart 86.7+7.6 5.T7+44 86.3 £5.8 41430 | 73.3+£49 26.5+25.0
HeartCle 83.0£5.5 49+27 | 8.3+27 344+1.1 |71.7+10.3 23.6+15.3
HeartHun | 85.94+6.3 5.0+2.9 84.8 + 3.8 4.5+ 3.0 0.0£0.0 0.0£0.0
HeartLB 77.0£9.8 34+£25 | 80074 51426 0.0£0.0 0.0£0.0
HeartSwi 942+38 23+£09 | 942+38 23+09 0.0£0.0 0.0£0.0
Hepatitis 83.3+£4.5 3.0+ 1.3 83.3 +6.2 25£08 | 79.3+£87 20+£0.0
Horse 84.0 £6.3 5.6 +2.2 85.7+ 7.9 41425 | 63.7£59 20£0.0
Ionosphere | 93.1 +4.5 6.8+ 1.4 90.0 £5.8 5.8+ 2.1 9144+42 55+ 1.7
Iris 96.0 £4.4 34407 96.0 + 3.3 344£07 | 91.3+£6.7 33+£0.5
Liver 67.7+£6.8 7.8+4.5 63.5 + 8.2 6.4+68 | 67.4+53 T.1+£3.7
Monks-1 909+7.1 2694+75 | 90.9+7.1 269475 | 493+7.1 20+£0.0
Monks-2 100 £ 0.0 2.7+ 2.1 100 £ 0.0 2.7+2.1 33.0+4.3 2.0+0.0
Monks-3 91.6 £44 162+44 | 91.6+44 162+44 | 493+£6.6 2.040.0
Pima 4.3 +£3.2 9.5+6.7 73.44+40 132478 | 73.7+£52 83+5.0
Promoters | 83.0 £6.4 34+14 83.0£64 3J4+£14 | 56.0£6.6 20.0+36.0
Sonar 83.0+7.8 64+27 81.5£9.5 48424 | 76.0£9.2 75+£38
Soylarge 75.0+52 263+4.7 | 75.0+£5.2 263+4.7 | 123+£6.8 2.0+£0.0
Soysmall 97.5+75 39+£03 | 975+£75 09403 |300+21.8 13.3+18.2
Vehicle 64.1£6.5 295+133| 61.7+3.2 25.94+18.3 | 57.0+£4.7 4944222
Votes 95.6 £2.6 6.1 +2.3 95.6 £2.6 6.1 +2.3 | 47.0£8.1 42.54+29.2
Vowel 65.2+6.9 34.6+85 | 65.8+£64 40.7£85 | 61.7£83 395£7.7
Wine 92.9+£5.8 4.3+0.8 92.9£5.8 41407 | 941+£64 4.7£0.6
Zoo 920+ 7.5 6.24+0.9 92.0+ 7.5 6.2+£09 |75.0£129 334+£174

35

Table 3: Results of various distance metrics (standard deviation, overlap based Euclidean,

Manhattan and Maximum value metrics).

Euclidean [s,0]

Manhattan [s,o]

Maximum value [s,o]

Dataset Accuracy Hidden Accuracy Hidden Accuracy Hidden
2SP 83776 T.7T+18 | 695+£6.1 T.1+39 | 721+6.7 88+£3.1
Annealing | 952419 145424 | 9484+3.0 17.5+£25| 0.0+0.0 0.0£0.0
Audiology | 66.0+10.0 2734+74 |66.0£100 273x£74| 1.0+2.0 0.6+£1.2
Bridge 63.0+78 52+£33 | 60078 42427 |38.0£14.7 15.3+£21.9
Cancer 96.8 £2.0 40+£16 | 96.8+1.9 454+26 | 954+1.7 104+4.4
CRX 85.2+56 10.5+54 | 84.9+6.3 91463 | 58.7+6.5 44.0424.0
Flag 46.8 £ 7.2 72444 | 51.1£88 9.1+£82 |316+108 36+1.4
Glass 68.1+7.7 11.5+7.7 | 66.2+58 73+36 | 695+68 9.5+ 7.7
Heart 85.9+6.4 554+33 | 8.6+45 52436 | 7T1.1+52 264+17.0
HeartCle 82.0£4.5 39424 | 833+£70 54+42 | 67.0+7.1 26.7+£17.5
HeartHun | 82.1 £4.8 54444 | 8.5+46 52+3.7 | 0.0£0.0 0.0£0.0
HeartLLB T1.0£7.5 43434 | 719.0£62 59+44 | 0.0£0.0 0.0£0.0
HeartSwi 942+38 22+£06 | 942+38 22406 | 0.0£0.0 0.0£0.0
Hepatitis 84.7+95 62+£40 | 84.0+68 46+3.1 | 84.7+95 42+£18
Horse 80.0£5.2 10.1+6.2 | 84.3+4.2 45+£20 | 63.7£59 2.0+0.0
Ionosphere | 92.9 +5.5 6.9+21 | 914+£59 58414 | 92.6 +4.1 53+£1.9
Iris 94.0 £3.6 384+1.2 | 91.3+£6.0 33+1.0 | 940+6.3 4.0+£1.2
Liver 66.5 £ 5.1 99457 | 644+46 106+83| 66.2+6.2 11.3+7.6
Monks-1 909+7.1 2694+75 | 909+7.1 269+£75| 493+7.1 2.0+£0.0
Monks-2 100 £ 0.0 2.7+ 2.1 100+ 0.0 27+£21 | 33.1£05 2040.0
Monks-3 91.6 £44 162+44 | 91.6+44 162+44 | 493+6.6 2.0+0.0
Pima 712+439 100+£38 | 76.3+5.1 81+£49 | 14.7+£4.0 13.14+108
Promoters | 83.0 +6.4 34414 | 8.0£64 34+14 | 56.0+6.6 20.0+£36.0
Sonar 82.0 £6.8 4.6 £+ 3.1 785+89 48+£21 | 7135+£74 56436
Soylarge 7.0+52 2634+4.7 | 5.0+52 263+4.7| 123+£69 2.0+0.0
Soysmall 97.5+75 39+£03 | 975+£75 39403 |30.0£21.8 13.3+£18.2
Vehicle 65.1£4.0 244496 | 65.4+35 23.7+£5.0] 62.1+4.7 52.9+18.6
Votes 95.6 £2.6 6.1+23 | 95.6+26 6.1+23 | 47.0+8.1 42.5+29.2
Vowel 66.7+75 31.2+£10.1] 65.0+7.7 363+£85| 57.9+88 39.24+13.5
Wine 95.9+4.6 49403 | 924+£75 44+£07 | 929+£58 44+£09
Zoo 920+ 7.5 62409 | 920£75 62+09 | 75.0£129 334+£174

36

Table 3: Results of various distance metrics (Dice, Cosine and Jaccard coefficient metrics).

Dataset

Dice coefficient

Cosine coefficient

Jaccard coefficient

Accuracy

Hidden

Accuracy

Hidden

Accuracy

Hidden

2SP
Annealing
Audiology
Bridge
Cancer
CRX

Flag

Glass
Heart
HeartCle
HeartHun
HeartLB
HeartSwi
Hepatitis
Horse
Ionosphere
Iris

Liver
Monks-1
Monks-2
Monks-3
Pima
Promoters
Sonar
Soylarge
Soysmall
Vehicle
Votes
Vowel
Wine

Zoo

26.8 £ 8.4

66.2 £ 8.9

92.6 £3.9
95.3 £6.7
66.8 £ 5.8

71.6 + 2.8

79.5+£7.2

28.8 £ 3.9

69.8 +6.4
94.3 £3.4

4.7£2.7

13.0 £10.2

8.2+3.0

20.2 £20.7

38.0 £8.3
6.0+ 3.6

56.8 £ 7.4

68.6 £ 5.7

94.3 £5.0
97.3+ 3.3
70.6 £6.2

68.2 £ 5.9

76.5 £ 8.1

61.0 £ 3.3

57.3£6.1
83.5£6.3

6.4 £10.0

11.0£5.4

173 £7.5

35.7+12.1
6.7+ 4.0

95.3£5.9

66.2 £8.9

92.9 + 3.7
95.3 £ 6.7
65.9£5.3

724+ 3.0

79.0£7.7

58.7+3.9

69.6 + 7.4
80.6 £ 6.5

5.5+ 3.2

11.4 £ 8.7

6.9+23

20.1 £ 20.8

38.1 £8.6
6.3 4.1

37

Table 3: Results of various distance metrics (Camberra and Attribute-based metrics).

Dataset

Camberra

Attribute-based

Accuracy

Hidden

Accuracy

Hidden

2SP
Annealing
Audiology
Bridge
Cancer
CRX

Flag

Glass
Heart
HeartCle
HeartHun
HeartLLB
HeartSwi
Hepatitis
Horse
Ionosphere
Iris

Liver
Monks-1
Monks-2
Monks-3
Pima
Promoters
Sonar
Soylarge
Soysmall
Vehicle
Votes
Vowel
Wine

Zoo

95.3 £6.0

95.3 £5.8

3.1£0.3

424038

63.7+£9.0

65.7 £ 8.7

92.6 £4.3
92.6 £4.3
72.9+5.1

74.7+3.9

78.5+£6.3

96.9 £5.2

50.2+£6.2
97.11+4.0

16.4 £9.2

22.7£9.0

8.5£29
8.5£29
21.5 £27.3

39.5 £27.9

5.3 £34

76.1 £ 23.7

48.7+ 28.1
5.0+ 1.7

38

Table 4: Comparison of generalization accuracy between various algorithms. DistAl is the
best results from Table 3 and NN is the best results obtained by nearest neighbor algorithms
in [57].

Dataset DistAl | NN
Annealing | 96.6 | 96.1
Audiology | 66.0 | 77.5

Bridge 63.0 | 60.6
Cancer 97.8 | 95.6
CRX 87.7 | 81.5
Flag 65.8 | 58.8
Glass 70.5 | 72.4
Heart 86.7 | 83.0

HeartCle 85.3 | 80.2
HeartHun 85.9 | 81.3
HeartLB 80.0 | 71.5
HeartSwi 94.2 | 93.5
Hepatitis 84.7 | 82.6

Horse 86.0 | 76.8
Ionosphere | 94.3 | 92.6
Iris 97.3 | 96.0
Liver 72.9]63.5
Monks-1 90.9 | 77.1
Monks-2 100 | 97.5
Monks-3 99.1 100
Pima 76.3 | 71.9
Promoters 88.0 | 92.4
Sonar 83.0 | 87.0

Soylarge 81.0 |92.2
Soysmall 97.5 | 100

Vehicle 65.4 | 70.9
Votes 96.1 | 95.2
Vowel 69.8 | 99.2
Wine 97.1 | 97.8
Zoo 96.0 | 98.9

39

Table 5: Comparison of neural network pattern classifiers constructed using the entire set
of features against those constructed using the best (in accuracy) GA-selected subset for
datasets from UCI Repository. Features is the number of features used, Accuracy is the
generalization accuracy obtained, and Hidden is the number of hidden neurons generated in
the neural networks.

All Attributes GA-selected Subset
Dataset Features Accuracy Hidden Features Accuracy Hidden
Annealing 38 96.6£2.0 12.1+£24 |21.0+3.1 9954+09 11.1+£29
Audiology 69 66.0£9.7 24.7+48 | 364+ 3.5 835182 274+56
Bridges 11 63.0£7.8 52433 56+15 81.6+7.6 17.6+124
Cancer 9 97.8+1.2 294+1.2 54+14 99.3+09 5.7+29
CRX 15 87.7+£3.3 7.7+£6.9 8.0+£21 91.54+28 125476
Flag 28 65.8+9.5 9.14+6.2 14.0 £2.6 78.1 £7.8 11.24+6.5
Glass 9 70.5+£85 9.846.9 5.5 +1.4 80.8 £5.0 14.5+6.6
Heart 13 86.7+7.6 5.7+4.4 7.24+1.6 93.9 £3.8 7.5+3.9
HeartCle 13 85.3+2.7 34+£1.1 7.3 +1.7 929 £3.6 7.6 +4.2
HeartHun 13 85.9+6.3 5.0+2.9 7.0 £1.2 93.0 £4.0 7.1+ 3.7
HeartSwi 13 94.2+3.8 2.240.6 6.6 +£1.7 98.3+3.3 3.7x1.5
HeartVa 13 80.0£74 51426 7.14+£1.7 91.0£5.7 85+3.0
Hepatitis 19 84.7+£9.5 6.24+4.0 9.2 423 97.1+4.3 81428
Horse 22 86.0+3.6 5.3+4.5 11.1 £2.3 926 £3.4 9.5+ 4.1
Ionosphere 34 94.3+£5.0 H55%1.6 17.3 £3.5 98.6 £2.4 7.5+24
Liver 6 729451 21.54+£273| 4.1 +£0.7 77.8+4.0 25.9424.3
Pima 8 76.3+£5.1 8.14+4.9 3.8+1.5 79.543.1 20.8+21.2
Promoters 57 88.0+7.5 22404 28.8 £3.3 100 0.0 2.7+1.0
Sonar 60 83.0+7.8 6.4+2.7 | 30.7£3.7 97.2£29 7.2+ 3.0
Soylarge 35 81.0£5.6 202432 | 194+£2.7 928459 23.3+4.3
Vehicle 18 65.4+3.5 23.7+£5.0 | 9.1 +£1.7 68.8+4.3 36.2+18.2
Votes 16 96.1+£1.5 32415 8.9+1.8 988+1.2 4.0+1.8
Vowel 10 69.8+6.4 38.0+£83 | 6.5£1.2 784438 41.51+7.7
Wine 13 97.1+£4.0 5.5+1.7 6.7 1.6 99.4 £2.1 59+ 2.1
Zoo 16 96.0+4.9 6.1+1.1 9.3 +£1.6 100 £0.0 6.2+ 1.1

40

Table 6: Comparison of neural network pattern classifiers constructed using the entire set of
features against those constructed using the best GA-selected subset in document classifica-

tion.
All Attributes GA-selected Subset
Dataset Features Accuracy Hidden Features Accuracy Hidden
Abstractl 790 89.0+£9.4 3.7+35 |393.7+129 976+4.7 5.0%1.9
Abstract2 790 84.0£12.0 954+7.0 | 3938+ 14.6 9444+73 11.6+8.2
Reutersl 1568 91.6£2.9 48.8+14.4 | 786.1+19.1 94.94+2.5 65.4+£13.3
Reuters2 435 88.5£10.5 6.2+ 2.0 2183+ 9.7 97.54+4.7 10.6%5.0
Reuters3 1440 96.4+1.6 19.1£3.7 | 7154 £ 20.3 98.7+ 1.0 39.7+10.9

41

