A Fast Algorithm for Hierarchical Text
Classification

Wesley T. Chuang!+3, Asok Tiyyagura?, Jihoon Yang®, and Giovanni Giuffrida'

! Computer Science Department, UCLA, Los Angeles, CA 90095, USA
{yelsew, giovanni}@cs.ucla.edu
2 Department of Computer Science, Jowa State University, Ames, IA 50011, USA
asokt@cs.iastate.edu
3 HRL Laboratories, LLC, 3011 Malibu Canyon Rd, Malibu, CA 90265, USA
{yelsew, yang}@wins.hrl.com

Abstract. Text classification is becoming more important with the pro-
liferation of the Internet and the huge amount of data it transfers. We
present an efficient algorithm for text classification using hierarchical
classifiers based on a concept hierarchy. The simple TFIDF classifier is
chosen to train sample data and to classify other new data. Despite its
simplicity, results of experiments on Web pages and TV closed captions
demonstrate high classification accuracy. Application of feature subset
selection techniques improves the performance. Our algorithm is compu-
tationally efficient being bounded by O(n log n) for n samples.

1 Introduction

As the amount of on-line data increases by leaps and bounds, the design of an
efficient algorithm or an approach to accessing the data (e.g. through classifi-
cation, clustering, filtering, etc.) has become of great interest. Two important
aspects motivate such design. First, the data needs to be arranged efficiently. For
example, instead of placing all the data in a flat directory, we can arrange it hier-
archically based on a concept hierarchy (see Yahoo, US Patent databases, CNN
and other major Internet news directories [13,9, 2]). Querying with respect to a
concept hierarchy is significantly more efficient and reliable than searching for
specific keywords since the views of the data collected are refined as we go down
the hierarchy [1]. Second, when text classification is our chosen approach, an
efficient algorithm should be used. A number of algorithms have been proposed
and their performances are compared in the literature [14].

We use the TFIDF text classifier [11,4] and proceed with the following steps
for hierarchical classification: The first step is to define the concept hierarchy
using domain knowledge and to collect text data corresponding to the concept
hierarchy. The data is then used for training the classifier and for testing the
performance of our classification system. The next step is to convert the data into
an appropriate form for classification (e.g. into a bag-of-words representation).
Then we can derive hierarchical classifiers by supervised learning with the data
collected. Finally, the classifiers are used to classify new data. Each of these steps

is described in detail in the following sections, followed by experimental results
and conclusion.

2 Concept Hierarchy

depth 1

dm{h :

I

@. dend
@ @ denns

Fig. 1. A sample concept hierarchy for professional baseball and basketball.

depth 2

Figure 1 shows a concept hierarchy which categorizes Web news reports for
professional baseball and basketball. Initially, a concept graph is generated based
on some domain knowledge. Each node in the hierarchy contains several text
documents whose topic is identified as the concept.

As in relational and object-oriented databases, in which there are no abso-
lutely standard schema (tables and classes), we do not have a faultless concept
hierarchy. In fact, we should not look for one that is exclusively superior to any
other even for the same data. We need one that can help us in alleviating our
humans semantic burden (since a concept hierarchy encapsulates semantics) and
facilitate achieving efficiency in data arrangement and searching capability.

However, unlike relational databases and object-oriented databases, Web doc-
uments, are generally unstructured. Therefore, the way we describe their schema
is different from the relational and object-oriented models. Because they are un-
structured, a convenient way to describe a concept in our hierarchy is to use a
collection of words (features) from a document. Since it is usually very easy for
humans to come up with some top-level concepts as the schema, we propose a
human-generated initial concept hierarchy.

Before taking this concept hierarchy to perform feature extraction and clas-
sification, there are several assumptions to be made. First, we assume that an
initial concept hierarchy has been created with each node labeled by one or a
few terms representing the concept. Second, we assume that several documents
have been manually placed into every node, serving as the training and testing
data for supervised learning. Our third assumption states that a parent node
owns the union of the documents of its child nodes.

3 Training the Hierarchy

After the initial hierarchy is set up and with training and testing documents
placed into each node, we can proceed to “train” the hierarchy. The rationale is
as follows: We will characterize those training documents residing in each node;
find a range (or threshold) of the various characteristics for the node so that it
can classify the test documents into certain concepts - that is, find suitable nodes
to index the new documents, from top to bottom, in the concept hierarchy.

Ideally, we would hope to characterize documents in each node with a “term”
or a label. However, this is not practical because for text documents, one feature
term will not suffice in describing the whole document. Instead, we must “under-
stand” the documents in some way. In the absence of a satisfactory solution to
the natural language understanding problem, most current approaches to doc-
ument retrieval use a bag-of-words representation of documents [11,4]. It is for
this reason we opt for surface parsing and obtain a vector (a set of word features)
of weights for each document with time complexity in the order of O(n), where
n is the number of words in the document.

Specifically, we restrict ourselves to a relatively simple yet effective approach
based on the TFIDF (term frequency X inverse document frequency) classifier
[11,4]. Since we are trying to separate documents into distinguishable concepts,
intuitively, the combined effect of term frequency and inverse document fre-
quency can distinguish two different document types well. Definitions of term
frequency and inverse document frequency are to follow.

3.1 Representing Features for Each Node

To convert a collection of documents in each node into special representation,
let’s examine the documents closely. First, every document is processed using
stopping and stemming procedures [11,4] to obtain a bag of words. Stopping is
the procedure to eliminate common words from the text, and stemming is the
procedure to find a unique representation (e.g. root) for a word. After these
procedures, we consider the following frequencies in the documents.

— Term Frequency: Let W be the set of words from all documents. The term
frequency of the word w; (ith vocabulary in W), TF(w;,d), is the number
of times w; occurs in document d.

— Document Frequency: DF(w;) is the number of documents in which word w;
occurs at least once.

— Inverse Document Frequency: IDF (w;) = log(Dll,I()l”)), where |D| is the total
number of documents among sibling nodes.

— Term Frequency x Inverse Document Frequency: TFIDF (w;,d) = TF (w;, d)%
IDF(w;)

We subsequently merge all child feature vectors to obtain the T'F' vector for
a node. Calculation of T'F' vectors continues bottom-up until we reach the root.
Meanwhile, we also propagate the DF vector for each node all the way up to the

root. When this merging process is completed, the feature vector in each node is
given by: F =< TFIDF(w,d), TFIDF(w2,d), ..., TFIDF(ww,d) >, where
d is the union of documents belonging to the node, and w is the union of the set

of words in d.

3.2 Determining the Threshold for Each Node

Having organized training documents into different nodes (classes) and having
built feature vectors for each of them, we characterize each class by a TFIDF
vector. In other words, TFIDF will now serve as a norm or prototype vector to

describe that class.

Formally, let C' be a collection of document classes of interest. A prototype
vector ¢ (for each class in the concept hierarchy) is generated for each class ¢ € C

as follows: ¢ = . F.

We will use these training documents
again to make a complete hierarchical clas-
sifier in two ways. First, for each prototype
vector ¢, we need to introduce a threshold
6 - a distance measure to indicate at what
distance range to the prototype vector we
consider documents fall into the same cat-
egory (i.e. class). This becomes clear if we
imagine that a TFIDF vector is lying in an
n-dimensional hyper-space!, shown in Fig-
ure 2. As can be seen, the threshold makes
a boundary for a class. For simplicity, we vi-
sualize it after normalization (i.e. as a unit-
length vector) in a 3-D coordinate system.
Second, we need to examine how good the
hierarchical classifier is. That is, given the
prototype vectors and thresholds, what is the
accuracy with which the classifier will cor-

threshold 6

one class

z

a prototy|

r=1

a prototype vector ¢

pe vector C

one class'

Fig. 2. Learning the threshold
to admit new documents into a

class.

rectly classify documents? Later, we will check the accuracy for other brand new
test documents. However, in this section, we only consider the accuracy for the
training documents which we used to come up with the prototype vectors.
Deriving threshold and computing training accuracy are inter-related. Here
we use classification training accuracy feedback to adjust the threshold. In other
words, we adjust the threshold in such a way that all documents considered
for the node will yield the best accuracy. Accuracy, as shown in the following,
concerns the percentage of documents correctly classifying into a class:

Accuracy =

of documents correctly categorized

a+d

of documents considered

a

+b+c+d

! Elements of the TFIDF vector are positive real numbers, so they can only lie in the

first quadrant.

In the equation, we use a,b,c,d |for (level = 1 to depth of hierarchy)
to indicate respectively the number of for (every node j in level)
documents that should be in a class F,, := getPrototypeVec(Node;);
and are selected; the number selected Docs := getDocuments(
but that should not be in; the number getSiblings(Node;) |J
that should be in but are rejected; and getChildren(Node;));
the number that should not be in and < F4 > := getFeatures(Docs);
are not selected. < Dist > := cos(Fp,< Fgq>);

Now, starting from the highest 0 := Find a cut d in < Dist >
level of the hierarchy, we compare the that maximizes accuracy;
training documents n (in vector rep- end
resentation) with the prototype vec- |end
tor of the node. When we compare

two feature vectors, a cosine function
is commonly used for similarity mea- Fig.3. Using accuracy feedback to ad-
sure. That is, we compute the similar- just the threshold.
ity of a document m to prototype vector ¢ by: V¢ € C cos(n,c) =Vce C m
For every node, we consider those training documents belonging to all sibling
and child nodes. We first sort them by their distances (Dist) to the prototype
vector. We then choose one distance that renders the best accuracy. This is the
threshold, 8. Pseudocode for computing 8 is shown in Figure 3. (All the functions
are self-explanatory.)

3.3 Time Complexity Analysis

Our approach involves surface parsing, i.e., obtaining features for words in the
documents as well as training features in the concept hierarchy. In parsing, time
is linear. Most of the time is taken up by training, especially when computing
the thresholds. Assume that n is the total number of documents, m is the to-
tal number of nodes in the hierarchy, and m << n. The contributing factors
timewise are: computing TF takes O(n); computing IDF takes O(n); computing
threshold 6 takes O(n log n), where n log n is what the sorting costs timewise.
All together, the time remains bounded by O(n log n), which upholds our claim
that this classification algorithm is fast.

4 Testing the Hierarchy
In this section, we test the performance of our hierarchical classifier using a test

set of documents which is different from the training set. The ratio of the total
number of testing documents to the training documents is about 1 to 2.

4.1 Every Node as a Classifier

When each node is equipped with a TFIDF vector and a threshold (6), we regard
the node as a classifier. Again, starting from the highest level of the hierarchy,

we compare the test document n (in vector representation) with the prototype
vector of the node. If these two vectors are close enough, based on the cosine
measure, we treat the test document as belonging to the class that the node
represents, and we continue to compare the document with its child nodes. If we
do not have a close match, we conclude that the document does not belong to
the class and stop.

In our hierarchical classifier, a doc-)
ument is assigned to all the classes |Let n be the vector to be classified.

whose prototypes are sufficiently close Class = ¢
to it. The pseudocode in Figure 4 |NV odeSet = root

summarizes the classification process. while (NodeSet # ¢) do
Retrieve a node; from NodeSet:

NodeSet = NodeSet — node;.

4.2 Test Accuracy Compute the prototype vector:

Test accuracy is defined as the ratio of ¢ = TFIDF (node;).
the number of correctly classified doc- Compute the similarity between n
uments to the number of documents and c: s = cos(n, c).
that are filtered at each node, i.e., if (s > 0)
correctly classificd NooSet — NodeSet L}J
correctly classi odeSet = NodeSet
est accuracy = # of filtered { getChildren(node;) }.
end

Since the classification is per-
formed from the top to the bottom
of the hierarchy, some test documents
“filter” through certain nodes and
continue to drill down in the hierar-
chy; others are stopped when their
similarity measures do not pass the threshold of the prototype vectors. Con-
sequently, the number of filtered documents diminishes as the testing process
continues to the bottom level.

return Class

Fig. 4. Finding the class for a new text
document.

5 Experiments

For training and testing, we collected approximately 200 documents on pro-
fessional baseball and basketball news. Experimental results demonstrate the
feasibility of our approach with good classification accuracy. In training, most
upper level nodes (classifiers) receive ratings of above 90% for training accuracy,
while some lower level nodes perform on the average at a rate of 75%. In testing,
the accuracy performance is relatively poorer, especially in lower nodes but ac-
ceptable in higher level nodes. This is because the concepts become more specific
as we go down the hierarchy. In addition, the number of documents considered
is relatively small compared to those at higher levels.

To account for the classification error, both in training and testing phases,
we look into two different types of errors: false-positive (FP) and false-negative
(FN). They are defined as follows (using a, b, ¢, and d as explained before):

.. __ # mistakenly put on __ b ; —
false-positive(FP) = # rot about the topic = Ty Jalse-negative(FN) =

#;masbtfff’gi ;’;;sisced = .+ Figure 5 reports such a breakdown of classification

errors for training and testing in the hierarchy. In the testing phase, a few lower
level nodes resulted in relatively high FN. This is due to the depth of the nodes
and the limited number of documents tested in those nodes.

& &)

%@
@
®
@
&
&

e B 66 68 6O

(a) Training phase. (b) Testing phase.

@@

Fig. 5. False-positive (fp) and false-negative (fn) errors (in percents).

5.1 Feature Subset Selection

The above experiment has shown that the TFIDF feature is a reliable indicator
for categorizing Web text. We now investigate whether a subset of these features
can perform as well in text classification.

Straight TFIDF Subset One feature selection represents each node with only
a subset of word features. The new feature vector for each node consists of the
top m leading TFIDFs after sorting the original vector by its TFIDF values:
F,, =< TFIDF(w1,d),TFIDF(ws,d),...,TFIDF (wy,d) >, where m <=
|[W].

Figure 6 illustrates the average accuracy (in percents) for classifiers at each
depth for both training and testing phases. In testing, 10 different subsets are
compared. According to our findings, when TFIDFs are cut down by 40-50%,
they scarcely affect the test accuracy. This has two implications: First, not only is
TFIDF a good indicator in text classification, but those higher TFIDFs values
are the dominating terms. Second, using subset features can reduce TFIDFs
storage requirements drastically and improve efficiency without compromising
classification accuracy.

Special Positive/Negative Vectors Another way of selection is to introduce
two special vectors (one positive, one negative) to represent the background
knowledge. The positive and negative vectors are manually made. They are the
human version of TFIDFs because most positive terms may coincide with the

Average accuracy for classifiers at each depth of the hierarchy
Testing with a subset of Tfidf features
Training|10%[20%]|30%]|40%]50%]60%|70%]80%]90%] 100%
1 97%65%|70%|77%|81%|87%|93%|93%|93%|93% 94%
2| 100%|57%(61%|68%|72%|78%|88% |88%|88%|90% 89%
3 90%61%|72%65%|75%|76%|79%|78%|78%|78% 76%
4

5

99%|57%|67%|68%|68%|68%|68%|68%(69%|70% 64%
98%(45%|55% |44%|45%|45%|46%|46%|48%|49% 32%

a0 &

Fig. 6. Average accuracy for classifiers at each depth of the hierarchy.

original TFIDF vector

] training|testing

— d[1i] 98%| 96%

| —— e[2 98%| 92%

‘ L»hrink’]'l"ll)l"vec(‘ﬂr p 3 92% 82%

LM ti4] 98%| 63%

——) @ hi5| 98%| 53%
new THIDE vector (b) Average accuracy.

(a) Design.

Fig. 7. Combining background knowledge in the classification.

dominating TFIDF's, whereas negative terms are words that do not contribute
to classification by human judgement.

Figure 7 (a) shows how this background knowledge is incorporated into the
original TFIDFs for every node in the hierarchy. During training, the negative
vector is subtracted from the original TFIDF vector. Later, in testing, we impose
a confidence function and the positive vector on each node, and let the confi-
dence function compete with the original similarity function. When background
knowledge confidence reaches a certain level, we abandon the cosine measure
and determine the category right away.

In this experiment, a very simple confidence function is used - the number
of positive words (d) that occur in the document. Such background knowledge
somewhat mimics the the way a human determines a category. In Figure 7 (b),
for example, when a § of 4 is used, it reveals that combining such background
knowledge into TFIDFs does improve the classification accuracy.

5.2 Applied to TV Closed Captions

We used the same approach as above, and applied it to TV closed caption data
mixed with a few Web pages (15%). Closed captions usually contain more typos
than Web pages. Even so, the classification accuracy showed some promising
results (Figure 8). This is important because success in classifying TV closed
captions can assist in video - or, generally multimedia - classification, in which
case, time is of great concern.

training testing
’ TFIDF w/ BK|BK alone
depth 1 96% 84% 81%
G (re (G (T depth 2 91% 81% 39%
depth 3 90% 58% 20%

(a) Concepts for TV closed caption data. (b) Average accuracy.

Fig. 8. Classifying TV closed captions with TFIDF and background knowledge(BK).

6 Related Work

A number of existing approaches are similar to hierarchical classification based
on a pre-defined concept hierarchy. Many of them are combined with feature
subset selection which finds the best subset of features that improves classifica-
tion accuracy, reduces measurement cost, storage, and computational overhead.
One example, TAPER [1], makes use of a concept hierarchy and classifies text
using statistical pattern recognition techniques. It finds feature subsets by the
Fisher’s discriminant. Similarly, Mladenic and Grobelnik proposed a document
categorization method based on a concept hierarchy [8]. They used the naive
Bayesian classifier on feature vector of word sequences and employed feature
subsets to yield good performance. McCallum et al. also proposed a hierarchical
classification using the naive Bayesian classifier [5]. In particular, they suggested
combining labeled and unlabeled data to boost the classification accuracy.

There have been numerous approaches for automatic generation of a concept
hierarchy. Their incentive is to eliminate the overhead of manually constructing
a concept hierarchy. Sahami, for example, applied unsupervised clustering to
generate a concept hierarchy from text data [10]. He made use of well-defined
similarity measures to find the clusters as well as to feature subset selection.
Sanderson and Croft presented a means of automatically deriving a hierarchical
organization of concepts from a set of documents [12]. Their work used co-
occurrence and subsumption conditions for selected salient words and phrases
without standard learning or clustering techniques. In addition, there exist a
variety of learning algorithms for text. Yang compared the performance of many
learning algorithms [14]. Mladenic surveyed text-learning and related intelligent
agents based on three key criteria: what representations to use for documents;
how to select features, and what learning algorithm to use. Mitchell’s book [6]
is yet another comprehensive source of machine learning algorithms.

7 Summary and Discussion

The design of an intelligent text classifier is of great importance in the current
world filled with such vast amounts of data. The algorithm must be fast because
time is critical. To fulfill these promises, we designed and implemented a hierar-
chical classification system that leverages on a concept hierarchy and a simple
and fast learning algorithm. The hierarchical aspect narrows down the search

space significantly by eliminating all irrelevant areas. Then, use of TFIDF and
accuracy-feedback quickly makes the classifier.

Regarding experimental results, the hierarchical classifiers performed fairly

well with the Web data and TV closed captions in the sports domain. Our
preliminary work on feature subset selection also demonstrated improvements
on classification accuracy and the cost associated with the use of features. Some
avenues for future research include:

— Exploitation of data structures: Structural information in the text (e.g., title,

sections, references) can be exploited and differentiated.

— Consideration of different types of data: The system can be tested with

different types of text data - for instance, U.S. patent data.

— Incremental learning: New data can be learned dynamically. Meanwhile, old

data should be ignored after some time has elapsed.

— Combination of labeled and unlabeled data: To reduce the overhead in data

preparation prior to learning, unlabeled data can be combined with labeled
data.

— Automatic expansion /shrinkage of the concept hierarchy: Dynamic change in

the concept hierarchy is needed to accommodate the newly formed concepts.

References

1.

11.
12.

13.
. Y. Yang. A Re-examination of Text Categorization Methods. In Proceedings of the

S. Chakrabarti, B. Dom, R. Agrawal, P. Raghavan. Using Taxonomy, Discrimi-
nants, and Signatures for Navigating in Text Databases. In Proceedings of the 23rd
VLDB Conference, 1997.

CNN.com. http://www.cnn.com/

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, S.
Slattery. Learning to Extract Symbolic Knowledge from the World Wide Web. In
Proceedings of the 15th Conference on Artificial Intelligence, 1998.

R. Korfhage. Information Storage and Retrieval. New York: Wiley, 1997.

A McCallum, K. Nigam, J. Rennie, and K. Seymore. Building Domain-Specific
Search Engines with Machine Learning Techniques. In AAAI-99 Spring Symposium
on Intelligent Agents in Cyberspace, 1999.

T. Mitchell. Machine Learning. New York: McGraw Hill, 1997.

D. Mladenic. Text-learning and related intelligent agents: a survey. In IEEE Intel-
ligent Systems, Vol.14, (no. 4), pages 44-54 July-Aug.1999.

D. Mladenic and M. Grobelnik. Featrure Selection for Classification based on Text
Hierarchy. In Working Notes of Learning from Text and the Web, Conference on
Automated Learning and Discovery (CONALD), 1998.

US Patent and Trademark Office. http://www.uspto.gov

. M. Sahami. Using Machine Learning to Improve Information Access. Ph.D. Dis-

sertation, Department of Computer Science, Stanford University. 1998.

G. Salton. Automatic Text Processing: the Transformation, Analysis, and Retrieval
of Information by Computer. Reading, Massachusetts: Addison-Wesley, 1989.

M. Sanderson, B. Croft. Deriving concept hierarchies from text. In Proceedings of
the 22nd ACM SIGIR Conference, pages 206-213, 1999.

Yahoo. http://www.yahoo.com/

22nd ACM SIGIR Conference, pages 42-49, 1999.

