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Abstract—Graph-based semi-supervised learning has recently
come into focus for to its two defining phases: graph construction,
which converts the data into a graph, and label inference,
which predicts the appropriate labels for unlabeled data using
the constructed graph. And the label inference is based on
the smoothness assumption of semi-supervised learning. In this
study, we propose an enhanced label inference approach which
incorporates the importance of each vertex into the existing
inference algorithms to improve the prediction capabilities of the
algorithms. We also present extensions of three algorithms which
are capable of taking the vertex importance variable to apply in
learning. Experiments show that our algorithms perform better
than the base algorithms on a variety of datasets, especially when
the data is less smooth over the graphs.

I. INTRODUCTION

While there may be large number of databases available,
only a small portion of the data is labelled. Moreover, labels
are relatively hard to obtain because the act of labelling
the data requires human labor or additional resources. Semi-
supervised learning (SSL) has emerged as a solution to this
problem and has been applied to many machine learning use
cases. SSL employs both labeled and unlabeled data in order
to train a model and has the potential to improve performance
over models which are trained via supervised learning tasks.
There has been much research dedicated to SSL (See [1], [2]),
and many studies have shown that of the SSL approaches,
graph-based SSL has many advantages: efficacy in practice
(outperforms other SSL approaches), convexity (majority of
graph-based SSL algorithms optimize a convex objective), ease
of scalability (many graph-based SSL algorithms can be easily
parallelized contrary to non-graph-based techniques) [3].

A SSL algorithm learns a function f :X→Y which associate
labels Y with data X. However there is no information about
this mapping in unlabeled data, so some assumptions are re-
quired to infer useful information related to the mapping. The
most common assumptions are the smoothness assumption and
the manifold assumption. The smoothness assmption implies
that ‘if two points x1 and x2 in a high density region are close
then their corresponding labels y1 and y2 are also close’. Thus
many algorithms minimize the total inconsistency of labels in
neighborhood vertices. The manifold assumption states that

‘high dimensional data generally lies within a low dimensional
manifold’. The graph is regarded as a proxy for the manifold
in graph-based SSL. By combining these two assumptions,
graph-based SSL aims to learn a label function from X to Y
using a graph constructed from the data.

Generally, we can expect a sufficiently good prediction
result if the training data satisfies the smoothness assumption
on the graph. But not every graph is smooth enough to use
to infer labels. Such graphs would lead to poorer prediction
results than those produced via supervised learning. Therefore
we sought out measures to improve the performance of graph-
based SSL so as to improve the application of the smoothness
assumption to existing algorithms, by introducing the concept
of vertex importance (or weight) and propose a method which
lowers the importance of vertices in order to improve the ap-
plication of the smoothness assumption in the label inference.

Each graph-based SSL algorithm is unique in its structure
and learning approach. Therefore, we must design techniques
which enable us to apply the concept of vertex importance
dynamically for a variety of algorithms. Therefore we present
an extension of one existing algorithm, Probabilistic Graph-
based Pointwise Smoothness (PGP) [4], as well as extensions
of two other widely applied algorithms, Gaussian Random
Fields (GRF) [5] and Label Spreading (LS) [6]. We further
propose proofs of convergence of the algorithms. These results
are able to improve the performance of existing qualified
algorithms and thus are expected to contribute to several
studies and application areas which use graph-based SSL.

II. RELATED WORK: GRAPH-BASED SSL

In the case of SSL, the training data {Dl, Du} consists of
l labeled instances Dl={(xi,yi)}li=1 and u unlabeled instances
Du={xi}ui=1 (n = l + u, generally u≫l). Graph construction
converts the data Dl, Du into a graph G=(V,W), which will
be used in the next phase. Here V is the set of vertices
satisfying |V|=n and W∈Rn×n is the edge weights. Typically
an undirected graph, i.e. Wij=Wji, is used, and when Wij=0,
it implies the absence of an edge between vertices i and j.

The label inference phase allows for the provision of initial
labels on graph vertices and for a method to infer labels on



unlabeled vertices. The most typical algorithm for doing this
is GRF, which minimizes the quadratic energy function on
real-valued label functions of vertices F:V→Rn×c (where Fi

is a label function of the vertex i consisting of c real values
and c is the number of classes). In this way, we are able to
adjust the labels for unlabeled vertices that are nearby in the
graph to have similar labels by the following objective:

argmin
F∈Rn×c,FL=YL

n∑
i,j∈V

Wij∥Fi − Fj∥2 (1)

where YL∈Rl×c is the seed labels of Dl, and FL=YL is a
constraint that preserves the labels of Dl during learning and
also after learning. For FL and YL, only a single element
of each row is 1 (the class representative) and others are
zero. FU∈Ru×c is the labels of Du, and initialized to zero
(Note that F={FL, FU}). Meanwhile, the graph Laplacian is
given by L=D-W, where D is a diagonal degree matrix with
Dii=

∑
jWij and Dij=0 for every i ̸= j. Thus

∑
Wij(Fi-Fj)

2

in (1) is simply expressed as a form of multiplications, FTLF .
The potential issue of using GRF with k-NN graphs is the

potential resulting degenerate solutions in which most of the
unlabeled vertices are classified as a single class, caused by
some vertices having a relatively large number of degrees. To
solve this, [6] proposed an LS objective by modifying (1) as:

1

2

 n∑
i,j=1

Wij

∥∥∥∥∥ Fi√
Dii

− Fj√
Djj

∥∥∥∥∥
2

+ µ

n∑
i=1

∥Fi − Yi∥2
 (2)

where Yi is a zero vector for i∈Vu (unlabeled data) and for
i∈Vl (labeled data), Yi consists of all zeros except for Yik=1
if i has the k-th label.

The first term of (2) has essentially the same notion of non-
smoothness in GRF, but there is a major difference in that
it reduces the impact of the label functions by the degree of
each vertex for regularizing the influence of the vertices with
high degrees. The second term means that the labels inferred
are not to be exactly same as the seed labels. Parameter µ
balances the influence of the terms. The condition Yi=0 for
i∈Vu also seeks the sparse representation of F.

GRF and LS have simple structures and are easy to imple-
ment. Therefore they have been applied in various languages
and are being used as the default methods of several semi-
supervised learning toolkits such as Junto, scikit-learn, and so
on. Moreover they are often used as the main graph inference
algorithms in many research studies in graph construction.

PGP, which operates on a new form of smoothness called
pointwise smoothness, shows robust and accurate classification
results compared to existing cutting-edge algorithms. There-
fore we also propose an extension method to PGP, in addition
to those presented for GRF and LS.

III. LABEL INFERENCE ALGORITHMS CONSIDERING
VERTEX IMPORTANCE

A. Necessity of Considering Vertex Importance
Each label inference algorithm has a common mathematical

term which reflects the smoothness assumption. That is, they

Fig. 1. Example of how a bad graph can lead to poor performance using
existing label inference algorithms

expect a positive effect on accurate labeling by supposing
the smoothness assumption works well on graphs, definitely.
However there may be some graphs that do not meet such
supposition, and the application of existing algorithms on such
non-smooth graphs can lead to poor inference results.

Figure 1 illustrates an example of this phenomenon. There
are two large symbols O (positive), X (negative) which lay
in the upper part of the figure. The large symbols represent
labeled instances. The other small symbols are unlabeled
instances. Some positive and negative samples are mixed at
the bottom and middle of the figure, and they have similar
distances to the positive labeled sample and to the negative
labeled sample. Therefore they are not likely to be classified
properly. The problem here then, is that the samples in this
area can propagate improper information about their nearest
neighbors, resulting in inaccurate inferences for the instances
which lie at both of the bottom-left area and the bottom-right
area. We may get better results by eliminating the samples
in the center area or by restricting their influence during the
processes of inference. In other words, we can acquire better
inference results by designing a method that identify aberrant
data points and then reduce the impact of such samples.

Therefore it is essential for the algorithm to have an iterative
solution for the changes in vertex importance at each iteration
to take effect in the inference, and the convergence of it must
be guaranteed even if weights of vertices change.

B. Proposed Algorithms

1) GRF with Vertex Weighting: In (1), Wij determines
application of the differences between the label functions of
vertices i and j. Thus in order to alter the importance of
vertex j, it is necessary to evaluate the importance ωj first
and stick ωjWij into Wij . The difference caused by Fj in the
calculation of non-smoothness changes with respect to ωj .

As such, to make possible changing the values of W while
in the midst of learning, we must solve the objective (1) by
applying an iterative algorithm. Two methods are generally
known [7] but both are not guaranteed to converge in the case
of changing values of W. Therefore we present a novel iterative
method for GRF. First, the closed form solution of GRF is
represented as follows:

FU = (I − PUU )
−1PULFL (3)



where the labeled data takes the first l-th instances and the
unlabeled data takes the l+1-th to l+u-th instances. So, PUU

occupies the bottom-left quadrant of P. P=D−1W is a row-
normalized transition matrix constructed from the training data
and it satisfies ∥P∥=1 and ∥PUU∥≤1. If ∥PUU∥<1 is always
true, we can replace (I-PUU )

−1 by a series and then can
derive an update equation used for iteration by applying the
definition of the Neumann series. The Neumann series (I-
T)−1=

∑∞
k=0 T

k converges if T is a bounded linear opeartor
(i.e., square matrix) and its norm is smaller than 1 (∥T∥<1).
Unfortunately the norm of PUU is not always smaller than 1.

So we must ensure ∥PUU∥<1 for any graph. The way is
simple: forcing every sum of rows to be smaller than 1. Specif-
ically, we can use Dii=

∑
jWij+ϵ in place of Dii=

∑
jWij

when evaluating P=D−1W where ϵ is a very small positive
real number (ϵ=2.2204×10−16 in Matlab). This method yields
the same solution compared to the closed-form solution, and
has been found to always converges experimentally. Thus we
use this to derive the update equation (5) from (3). (3) is
represented as follows if the Neumann series is applied:

FU =

( ∞∑
i=1

P i
UU

)
PULFL (4)

And the iteration equation is derived as follows:

FU (t) =

(
t∑

i=1

P i
UU

)
PULFL

FU (t− 1) =

(
t−1∑
i=1

P i
UU

)
PULFL

∴FU (t) = PUUFU (t− 1) + PULFL

(5)

Therefore the iterative algorithm of GRF with vertex
weighting is performed as follows: First, at the current itera-
tion, compute ωi (the values of ω should be in [0, 1]) for every
vertex i∈V, and then substitute the values of W with ωjWij

for every i and j. Next, evaluate PUU by adopting the latter
strategy of constraining ∥PUU∥<1. Finally, calculate FU (t)
using the changed PUU . We can obtain a unique solution by
repeating the above procedures iteratively. In Section 4, we
describe how the importance of vertices are calculated and
the convergence proofs of the algorithm.

2) LS with Vertex Weighting: Unlike GRF, LS is extended
by changing the objective which should be minimized. Analo-
gous to the strategy of regularizing vertices with high degrees
(Section 2), we can change the rate of influence of the vertex
i by multiplying the importance ωii by Fi. ωii is a diagonal
element of ω, similar to the relation between Dii and D.

1

2

 n∑
i,j=1

Wij

∥∥∥∥∥
√
ωii√
Dii

Fi −
√
ωjj√
Djj

Fj

∥∥∥∥∥
2

+ µ

n∑
i=1

∥Fi − Yi∥2

(6)

To minimize (6), we first rewrite it as follows:

Q(F ) =
1

2

{
tr(FTLF) + µ∥F − Y ∥2F

}
(7)

where F = ω1/2D−1/2F and L = D −W .
And we take the derivative of Q(F) with respect to F:

∂

∂F

{
1

2

(
tr(FTω1/2D−1/2(D −W )D−1/2ω1/2F )

+ µ∥F − Y ∥2F
)}

= (ω − ω1/2Sω1/2)F + µ(F − Y )

= ωF − S
′
F + µ(F − Y )

(8)

where S=D−1/2WD−1/2 and S
′
=ω1/2Sω1/2. We can get a

closed-form solution which minimizes (7), by replacing F by
F* and set this derivative equal to zero.

∂Q(F )

∂F
(F = F ∗) = ωF ∗ − S

′
F ∗ + µ(F ∗ − Y ) = 0

IF ∗ − IF ∗ − (S
′ − ω)

1 + µ
F ∗ +

µ

1 + µ
F ∗ =

µ

1 + µ
Y

∴ F ∗ =
µ

1 + µ

{
I − 1

1 + µ
(S

′
− ω + I)

}−1

Y

(9)

(9) must be solved iteratively just as was in the case of GRF.
Because ∥S′−ω+I∥=1, the matrix inversion can be replaced
with a series given that µ has a value larger than 0. We also
derive an update equation similarly. In (10), F(0)=Y.

F (t) =

[
t∑

k=0

{
I − 1

1 + µ
(S

′
− ω + I)

}k
]

F (0)

1 + µ

F (t− 1) =

[
t−1∑
k=0

{
I − 1

1 + µ
(S

′
− ω + I)

}k
]

F (0)

1 + µ

∴ F (t) =

{
I − 1

1 + µ
(S

′
− ω + I)

}
F (t− 1) +

F (0)

1 + µ
(10)

As in the closed-form solution of LS, Yi(=Fi(0)) is initialized
to a zero vector for i∈Vu. For i∈Vl, Yi is initialized to all zeros
except for Yik=1 if i has the k-th label. We can obtain a unique
solution by updating F(t) according to (10). The convergence
proofs is also described in Section 4.

3) PGP with Vertex Weighting: PGP defines the transition
between the states (vertices) by establishing the transition
matrix P (Equation (14) in [4]) of a Markov chain. It also
provides the label prediction procedure (Equation (15) in [4])
which requires the stationary distribution of the Markov chain.
Since P utilizes the smoothness assumption of SSL, we are
able to change the values of P such that the important vertices
are more likely to propagate their label information, in order
to apply the concept of vertex importance.

However, we cannot conduct both the calculation of sta-
tionary distribution and the measuring importance of vertices
simultaneously. Unfortunately, there is no stable method for
estimating the stationary distribution of a time-inhomogeneous
Markov chain (Markov chain with varying P over time). Thus
we present a 2-pass algorithm which consists of a step for
evaluating the importance of vertices and changing P and a
step for label inference with modified P.



The algorithm is applied as follows: For pass 1, the orig-
inal PGP algorithm is run and the importance of vertices
is calculated using the label distribution. For pass 2, using
transition matrix P from pass 1, the new transition matrix
is computed using Pij←ωjPij . The modified P should be
normalized to satisfy

∑
jPij=1. After that we can infer a new

label distribution. It has been proven that the Markov chain
converges to a unique solution with a static transition matrix
P. Therefore this extension of PGP also converges.

C. Determination of Weights of Vertices

We present four criterions for determining weights of ver-
tices. The initial values of ω are initialized to 1. ω varies over
time. The reasoning for these criterions is that the weights
must be small if the label distribution Fi (normalized to sum
to 1) is close to uniform, and vice versa. All criterions below
produce values within [0, 1]. 0I represents a zero vector.

• MinMax Criterion (MM):

ωi =

{
1− mink(Fik)

maxk(Fik)
if maxk(Fik) ̸= 0

1 otherwise
(11)

• Ambiguity Ratio (AR): Represents the ambiguity of
choosing the label of vertex i

ωi =

{
1− 2nd maxk(Fik)

maxk(Fik)
if maxk(Fik) ̸= 0

1 otherwise
(12)

• KLD Criterion: Exploits Kullback-Leibler Divergence

ωi =

{
1− KLD(Fi∥u)

∀v∈V maxv(KLD(Fv∥u)) if Fi ̸= 0I

1 otherwise
(13)

• Variance Criterion (Var): Exploits the variance between
Fi and uniform distribution

ωi =

{
1−

∑
k(Fik−uk)

2

∀v∈V maxv(
∑

k(Fvk−uk)2)
if Fi ̸= 0I

1 otherwise
(14)

D. Non-smoothness Measure of Graph with Labeled Data

In Section 3.1, we examined how the vertex importance is
used in label inference. However, the proposed approach may
fail if the training data does not include samples which may
harm the performance of the algorithms. Therefore a condition
is required to establish the need for considering the weights of
vertices. If possible, we can freely use the extended algorithms
without concern for failure.

For this we define a threshold modifying the non-
smoothness measure of GRF (i.e., FTLF ). Specifically, we
calculate the non-smoothness of a graph which consists of
labeled vertices and edges between a pair of labeled vertices
only. Here we present a hypothesis for how this measure
can be applied: If the non-smoothness of a labeled graph
is considerably greater than some threshold value, then the
graph constructed from the whole instances of training data is
not likely to be sufficiently smooth to guarantee high quality
predictions. So in this case we must consider the importance

of vertices in order to achieve better results. A related issue
is that of selecting the appropriate values for the threshold. In
addition, it is necessary to scale this measure so that it may
be applicable to a number of diverse graphs.

In conclusion, we evaluate the non-smoothness measure of
a graph to determine whether we will consider the weights on
vertices by applying the procedure below:

• Get Wl from W, such that Wl consists only of labeled
vertices having edge(s).

• Evaluate the graph Laplacian Ll using Wl

• Let the non-smoothness measure nsl = tr(FT
l LlFl) / (the

number of edges in Wl × mean of Wl)
The threshold is empirically set to 0.15. Therefore, the

extended algorithms are applied if nsl>0.15. Otherwise, the
base algorithms are instead applied.

IV. CONVERGENCE PROOFS

We prove the convergence of the two algorithms (GRF, LS
with vertex weighting) described in Section 3.2. For the PGP,
we analyzed the convergences within the section.

A. GRF with Vertex Weighting

We must confirm ∥PUU∥<1, and show that the convergence
also holds for varying T through iteration.

Theorem 1 ∥PUU∥<1.
Proof: PUU is a square matrix consisting of positive real

values such that the sum of each row is less than 1. Then the
maximal absolute value (or the spectral radius) is less than 1 by
the Perron-Frobenius theorem. Moreover, the spectral radius
of PUU is the same as its norm because PUU is a normal
(symmetric) matrix. Therefore ∥PUU∥<1. ■

Theorem 2 The algorithm converges if ω varies.
Proof: For V=PUU , Y=PULFL and the Vt=V at iteration t,

(5) is expanded in two terms as follows (F(t)=FU (t)):

F (t) = V1 · · ·Vt−1F (0) + Y ·
{I + Vt + Vt−1Vt + Vt−2Vt−1Vt + · · ·+ (V2 · · ·Vt−1Vt)}

(15)

Because the norm of V is always less than 1,
q=max{∥V1∥,. . .,∥Vt∥}<1. For bounded linear operators A, B,
and C=BA, ∥C∥≤∥B∥∥A∥ is satisfied. Then for the latter term
of (15), ∥V2 · · ·Vt−1Vt∥≤∥Vt∥∥Vt−1∥ · · · ∥V2∥≤ qt−1. And
qt−1→0 for t→∞. Therefore ∥V2 · · ·Vt−1Vt∥→0 and every
element of V2 · · ·Vt−1Vt converges to 0 for a considerably
large value of t. Thus the coefficient of Y becomes a finite
series and converges to some value. The coefficient of F(0),
V1(V2· · ·Vt−1Vt), becomes V1×0 and also converges to 0.
Therefore (15) converges. ■

B. LS with Vertex Weighting

It is necessary to confirm the convergence of the Neumann
series and to show the convergence of the update equation.

Theorem 3 ∥S′ − ω + I∥=1.
Proof: A transition matrix is defined to be

P=D−1W=D−1/2SD1/2. We can define T similar to



S
′
-ω+I, as T=ω(P-I)+I=D−1/2(S

′
-ω+I)D1/2. If two matrices

are similar, then their eigenvalues are equal. Meanwhile, for
any row i of P, the sum of this row except the diagonal
element pii is (1-pii). Therefore for T=ω(P-I)+I, its diagonal
element in the i-th row is ωii(pii-1)+1 and the sum of the i-th
row not including the diagonal element is ωii(1-pii). The sum
of all elements of the i-th row is thus ωii(pii-1)+1+ωii(1-
pii)=1. Therefore by the Perron-Frobenius theorem, the
spectral radius of T is 1 and the spectral radius of S

′
-ω+I is

also 1 because they are similar. S
′
-ω+I is a normal matrix

therefore ∥S′ − ω + I∥=1. ■
Theorem 4 The algorithm converges if ω varies.
Proof: For V= 1

1+µ (S
′ − ω + I), Y= 1

1+µF(0) and the Vt=V
at iteration t, (10) is expanded in two terms as in (15).
Meanwhile, for a real value α and a matrix A, ∥αA∥=|α|∥A∥
is satisfied. Then for 1/(1+µ) within (0,1), the norm of V is
always less than 1 according to Theorem 3 and the norm of
Vi is always equal to 1/(1+µ) (After this, ∥Vi∥=1/(1+µ)=q).

Therefore for the latter term of (15),
∥V2 · · ·Vt−1Vt∥≤∥Vt∥∥Vt−1∥ · · · ∥V2∥=qt−1 and qt−1→0
for t→∞. Thus ∥V2 · · ·Vt−1Vt∥→0, the algorithm converges
as shown in the latter half of the proof of Theorem 2. ■

V. EXPERIMENTS

A. Data and Settings

We apply the benchmark datasets provided from [1] for the
experiments. The sources and statistics are described in detail,
in Section 21 of [1]. Except BCI, each dataset consists of 12
subsets with 100 labeled and 1400 unlabeled instances (for
BCI, 100 labeled and 300 unlabeled). For each dataset we
evaluate the average classification error of the subsets.

In addition, we include one face, one voice and one object
dataset, Extended Yale B, Isolet, COIL(COIL20, COIL100), in
the experiments. Each dataset has its own source but we adopt
the datasets created by [8]. The sources and statistics are also
described in [8]. In order to use them in the experiments, we
process these data as follows:

• Extended Yale B: We select a 32×32 pixel data file, and
use first 10 subsets of 50 random splits. The number
of classes is 38. There are 64 images per class. For
experimentation, we take 10 or 30 images per class and
regard them as labeled data and the rest as unlabeled.

• Isolet: First we take all five subsets, named Isolet1-5, and
randomly select 10% or 50% of the samples in each class
and treat them as labeled samples.

• COIL: For two two datasets, COIL20 and COIL100, we
randomly select 10% or 50% of the images in each class
and treat them as labeled images. On each percentage of
labeled images, we produce 10 subsets.

The graphs for the benchmark datasets of [1] are constructed
asymmetrically (add edges between vertices i and j where
either i is a nearest neighbor of j) as 5/10/20-NNs (g241c,
g241n: 20-NN, TEXT: 10-NN, and the rest: 5-NN) with
a squared kernel width σ2 which is equal to the average
squared distance of the nearest neighbors. For the three Matlab

TABLE I
EXPERIMENTAL RESULTS OF BENCHMARK DATASETS (AVERAGE

CLASSIFICATION ERRORS)

Digit1 USPS COIL COIL2 BCI TEXT g241c g241n

1-NN 0.0757 0.0787 0.2299 0.1250 0.4522 0.5028 0.3949 0.3728
MP 0.0214 0.1209 0.1555 0.0450 0.4828 0.3727 0.4803 0.4499

AGR 0.0467 0.1405 0.2199 0.0989 0.4739 0.3226 0.3510 0.3267

GRF 0.0207 0.0749 0.1527 0.0412 0.4728 0.3060 0.4352 0.4018
GRF (MM) 0.0207 0.0753 0.1526 0.0408 0.4725 0.2968 0.4057 0.3691
GRF (AR) 0.0207 0.0753 0.1510 0.0408 0.4725 0.2968 0.4057 0.3691

GRF (KLD) 0.0207 0.0753 0.1515 0.0408 0.4683 0.3319 0.3985 0.3826
GRF (Var) 0.0207 0.0753 0.1511 0.0408 0.4692 0.3265 0.4000 0.3821

LS 0.0279 0.0613 0.1593 0.0510 0.4806 0.2901 0.4188 0.3716
LS (MM) 0.0279 0.0605 0.1593 0.0510 0.4769 0.2762 0.3711 0.3345
LS (AR) 0.0279 0.0605 0.1577 0.0510 0.4769 0.2762 0.3711 0.3345

LS (KLD) 0.0279 0.0607 0.1585 0.0510 0.4644 0.2839 0.3511 0.3152
LS (Var) 0.0279 0.0605 0.1576 0.0510 0.4669 0.2832 0.3510 0.3144

PGP 0.0322 0.0602 0.1692 0.0548 0.4653 0.2818 0.3828 0.3465
PGP (MM) 0.0324 0.0565 0.1686 0.0548 0.4633 0.2839 0.3615 0.3252
PGP (AR) 0.0322 0.0575 0.1694 0.0549 0.4636 0.2835 0.3629 0.3266

PGP (KLD) 0.0323 0.0565 0.1686 0.0549 0.4600 0.2954 0.3758 0.3408
PGP (Var) 0.0326 0.0570 0.1685 0.0548 0.4639 0.2938 0.3762 0.3382

datasets, first we normalize each sample so that it has a unit
norm. Then we construct asymmetric 4/20-NNs (only 20-NN
for Isolet) with kernel width σ equal to 1.

Algorithms and parameters for comparison are as follows:
• 1-NN: A 1-Nearest Neighbor classifier
• Measure Propagation (MP) [9]: A probabilistic graph-

based SSL algorithm (µ=0.05. ν=0.01, α=1)
• AnchorGraph Regularization (AGR) [10]: A scalable and

fast SSL algorithm (m=10% of n, s=3)
• GRF and its extensions: No parameter
• LS and its extensions: 1/(1+µ)= 0.9
• PGP and its extensions: α=0.2
The maximum number of iterations of the algorithms is set

to 1000, but we further set an additional stopping criterion
∥vec(F(t)-F(t-1))∥/∥vec(F(t-1))∥<10−6, where ‘vec’ denotes
the vectorization operator. The left-hand side of the inequality
is the relative residual of F. If this is met, the algorithms stop.
In order to avoid reducing the performance of the algorithms,
we only apply the extension methods which include the
importance of vertices if nsl>0.15 (Section 3.4).

B. Results and Analysis

In Table I and II, the bold names of the algorithms are the
proposed extension methods, and the bold numbers represent
that the proposed vertex weighting approaches which enhance
classification performance of the base algorithms for GRF, LS,
and PGP. The best results are underlined.

In Table I, the proposed methods perform better than the
base algorithms when conducted on datasets such as BCI,
TEXT, g241c and g241n. As explained in Section 3.1, the
results indicate that the adjustment of the influences of vertices
is justifies the application of the extension algorithms in
label inference. For Digit1, USPS, COIL and COIL2 the
performance of the proposed methods are relatively poor when
nsl=0, but such degradation in performance can be prevented
by setting nsl>0.15. There is some degradation in perfor-
mance on TEXT (for GRF and PGP) but it is also avoidable
by applying the MinMax or the Ambiguity Ratio criterion.
The benchmark datasets have a small number of classes (6 for



TABLE II
EXPERIMENTAL RESULTS OF ADDITIONAL DATASETS (AVERAGE CLASSIFICATION ERRORS)

YaleB (10) YaleB (30) Isolet (10%) Isolet (50%) COIL20 (10%) COIL20 (50%) COIL100 (10%) COIL100 (50%)

1-NN 0.4460 0.2352 0.3363 0.2412 0.1290 0.0261 0.2335 0.0597
MP 0.2961 0.2035 0.2568 0.1704 0.0729 0.0385 0.1546 0.1023

AGR 0.7285 0.9279 0.3541 0.5218 0.1289 0.6067 0.2453 0.9580

GRF 0.2751 0.1759 0.2513 0.1514 0.0684 0.0238 0.1483 0.0807
GRF (MM) 0.2750 0.1760 0.2514 0.1514 0.0686 0.0238 0.1706 0.0808
GRF (AR) 0.2733 0.1758 0.2574 0.1493 0.0686 0.0238 0.1706 0.0808

GRF (KLD) 0.2752 0.1785 0.2488 0.1488 0.0686 0.0238 0.1704 0.0808
GRF (Var) 0.2772 0.1795 0.2500 0.1496 0.0686 0.0238 0.1703 0.0808

LS 0.2909 0.2014 0.2602 0.1922 0.0729 0.0385 0.1551 0.1023
LS (MM) 0.2908 0.2016 0.2602 0.1922 0.0729 0.0385 0.1551 0.1023
LS (AR) 0.2897 0.1914 0.2590 0.1742 0.0729 0.0385 0.1542 0.1023

LS (KLD) 0.2941 0.1980 0.2585 0.1770 0.0729 0.0385 0.1550 0.1023
LS (Var) 0.2956 0.1933 0.2577 0.1652 0.0729 0.0385 0.1545 0.1023

PGP 0.2949 0.1824 0.2498 0.1506 0.0754 0.0242 0.1588 0.0811
PGP (MM) 0.2956 0.1827 0.2481 0.1496 0.0753 0.0240 0.1586 0.0809
PGP (AR) 0.3022 0.1929 0.2533 0.1473 0.0754 0.0242 0.1588 0.0809

PGP (KLD) 0.3000 0.1887 0.2523 0.1450 0.0755 0.0242 0.1588 0.0808
PGP (Var) 0.3068 0.1976 0.2614 0.1434 0.0756 0.0242 0.1588 0.0809
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Fig. 2. Performance Comparison between LS and LS (AR) (Average Errors)

COIL and 2 for the rest), therefore we recommend using the
MinMax or the AR criterion for stable results.

In Table II we can also see that the proposed approaches
safely enhance performance, particularly for LS. The ap-
proaches are especially effective on the Isolet dataset. In
addition, we can avoid the degradation in performance of GRF
on COIL100 (10%) and PGP on YaleB (10%) by setting a
larger threshold value of nsl.

We recommend using the extended algorithm of LS with
the MinMax or the AR criterion, as the more stable results are
able to successfully avoid the decrease in performance. These
criterion in conjunction with the extended LS algorithm are
most effective on TEXT, g241c, g241n and COIL100. We can
see this clearly in Figure 2, which is the visualized result of LS
and LS (AR). We presume that the success of this algorithm
comes from the changes in the values of the label functions,
whereas the other algorithms change W.

VI. CONCLUSION

In this paper we propose a new approach to enhance existing
label inference algorithms of graph-based SSL by incorpo-
rating the importance of vertices. We also propose three
extensions of existing algorithms GRF, LS, and PGP. To ensure
the quality of results before learning, we introduce a unique
measure (nsl) for determining whether to apply the proposed
method on the data. The experimental results for 8 benchmark
datasets and various additional datasets have demonstrated that

our proposed approach enhances the base algorithms safely
for an appropriate threshold value of the measure nsl. There
still remain several directions for future work: seeking other
approaches of vertex weighting, conducting experiments on
other datasets, and presenting additional extensions of other
label inference algorithms.
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