
Vol. 24 no. 1 2008, pages 118–126
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm544

Data and text mining

Kernel approaches for genic interaction extraction
Seonho Kim1,*, Juntae Yoon2,* and Jihoon Yang1,*
1Department of Computer Science, Sogang University and 2Daumsoft Inc., Se-Ah Venture Tower, Seoul, Korea

Received on May 14, 2007; revised on September 21, 2007; accepted on October 25, 2007

Advance Access publication November 14, 2007

Associate Editor: John Quackenbush

ABSTRACT

Motivation: Automatic knowledge discovery and efficient informa-

tion access such as named entity recognition and relation extraction

between entities have recently become critical issues in the

biomedical literature. However, the inherent difficulty of the relation

extraction task, mainly caused by the diversity of natural language,

is further compounded in the biomedical domain because biomed-

ical sentences are commonly long and complex. In addition, relation

extraction often involves modeling long range dependencies,

discontiguous word patterns and semantic relations for which the

pattern-based methodology is not directly applicable.

Results: In this article, we shift the focus of biomedical relation

extraction from the problem of pattern extraction to the problem

of kernel construction. We suggest four kernels: predicate, walk,

dependency and hybrid kernels to adequately encapsulate informa-

tion required for a relation prediction based on the sentential

structures involved in two entities. For this purpose, we view the

dependency structure of a sentence as a graph, which allows the

system to deal with an essential one from the complex syntactic

structure by finding the shortest path between entities. The kernels we

suggest are augmented gradually from the flat features descriptions

to the structural descriptions of the shortest paths. As a result, we

obtain a very promising result, a 77.5 F-score with the walk kernel on

the Language Learning in Logic (LLL) 05 genic interaction shared task.

Availability: The used algorithms are free for use for academic

research and are available from our Web site http://mllab.sogang.

ac.kr/�shkim/LLL05.tar.gz.

Contact: shkim@lex.yonsei.ac.kr

1 INTRODUCTION

Due to the dynamic progress in biomedical technology, a huge

amount of new information and research results have been

constantly published. This tendency makes it difficult to keep

track of newly provided information, thus requiring automatic

knowledge discovery from biomedical text such as biomedical

named entity (NE) recognition and relation extraction among

the named entities. In particular, successful results have been

reported from recent research on biomedical NE recognition,

while biomedical relation extraction is still a challenge.
In general, biomedical information extraction systems aim to

extract pre-defined types of facts, such as relationships/

interactions between biomedical entities. For example, we can

consider several relations such as ‘cure’, ‘prevent’, ‘vague’, ‘side

effect’ and ‘no cure’ between two entities, treatment and disease.
In this work, we identify genic (protein/gene) interactions

between biomedical entities on the LLL 05 shared task (Aubin,

2005). The goal of the challenge is to learn rules for extracting

protein/gene interactions from Medline abstracts, discriminat-

ing between agent NEs and target NEs of the interactions. Such

interactions are fundamental in functional genomics because

they form regulation networks that are very informative for

determining the functions of genes.

However, a considerable portion of descriptions for such

interactions is available not in a structured biomedical

database, but in scientific papers with raw text format.

Moreover, much useful information is actually scattered

across multiple papers. For this reason, various approaches

have been applied to relation extraction in the biomedical

domain. We can broadly categorize prior biomedical relation

extraction systems into two methods: co-occurrence-based and

pattern-based approaches.

In the simple co-occurrence-based work, two entities are

assumed to have a relationship if they are only mentioned

together without being necessarily related in a specific way.

That is, the relationship implies that two entities repeatedly

occur together or by the presence of some linguistic expressions.

However, relations between entities are less predictable by pure

co-occurrences of terms in sentences. Thus, we need a

specificity measure to ensure that the extracted relations are

not too general. For instance, 6 of genes and proteins appear in

Figure 1a, only 5 pairs among 30 possible ordered NE pairs

have real interactions: (GerE, cotD), (GerE, cotA), (sigma K,

cotA), (GerE, SigK) and (sigK, sigma K). In order to extract

the correct interaction pairs, deep-level linguistic processing

such as syntactic and semantic analysis is required. We first

have to recognize that the NE of a protein name is the subject

of interaction verbs such as ‘stimulate’ or ‘inhibit’, and the NE

at the object position is a gene name or gene expression.

In addition, in order to identify ‘stimulates’ and ‘inhibits’ that

share the same subject, ‘GerE’, a coordination processing

should be performed.

The other dominating method is the pattern-based approach

that utilizes a set of words, phrases, sentence patterns/templates

or longest common subsequences concerning special verb/noun

keywords such as ‘interact’, ‘bind’, ‘associate’ and ‘complex’

used to represent biomedical interactions. For instance, a

keyword ‘interact’ is associated with the following*To whom correspondence should be addressed.

118 � The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

http://mllab.sogang

patterns: ‘NEA interacts with NEB’, ‘interaction of NEA

(with|and) NEB’, ‘interaction (between|among) NEA and

NEB’, ‘NEA-NEB interaction’, and ‘NEA and NEB interact’

(Ono et al., 2001). Such patterns/templates can be extracted by

using a set of syntactic tags or part-of-speech (POS) tags as

rules, which are constructed automatically or manually. For

example, ‘proteinþVBþTOþ protein’1 is a POS tag rule for

the ‘bind to’ pattern and ‘proteinþVBþ INþ protein’, for the

‘interact/associate with’ pattern.

There has been much work on pattern-based relation

extraction as it provides an intuitively easy and rather accurate

framework. Blaschke et al. (1999) have extracted interactions

based on a set of manually developed matching rules, where

each rule is simply a sequence of words or POS tags anchored

on two protein entities. Fundel et al. (2005), Ono et al. (2001)

and Jang et al. (2006) have also suggested a rule-based pattern

extraction from parse trees. Huang et al. (2004) extracted

generalized POS rule patterns from a biomedical POS tagged

corpus. They used a dynamic programming algorithm to align

relevant sentences for each keyword and compute distinguish-

ing POS tag patterns. Hao et al. (2005) extended Huang et al.’s

model to efficiently reduce and merge the POS patterns using

the minimum description length (MDL).
However, these prior works have mainly focused on syntactic

aspects, which often fail to correctly account for relations

between entities. As shown in Figure 2c, ‘GerE’ and ‘SigK’ have

a long-distance dependency relation that spans several clauses.

In the biomedical domain, such long range relations or

discontiguous word patterns are very common since biomedical

sentences are long and complex. In addition, syntactic tags or

POS tags rules are not enough to indicate semantic relations.

For example, as shown in Figure 1b and c, pattern-based

approaches cannot appropriately handle the semantic aspects,

such that ‘the ability of fibrillins to bind’ conveys the meaning

of ‘fibrillins bind’ and ‘bound to the C-terminal part of the rod

region of NuMA’ conveys the meaning of ‘bound to NuMA’

(Jang et al., 2006). That is, various syntactic realizations with

the same meaning cannot be accounted for using only the

patterns extracted by syntactic or morphological tags. As a

result, the pattern-based approaches have shown excessively

low recall rates. In addition, the type and the direction of a

relation cannot be easily identified using only the syntactic

patterns.

In this article, we address the problem of genic interaction

extraction by using kernel-based machine learning. The kernel

is a kind of similarity function for features derived from a pair

of objects. In our work, an object corresponds to the shortest

path between two NEs on the syntactic graph for a sentence.

Actually, syntactic dependency information provided by the

LLL shared task is hard to represent by a tree form, thereby

making effective feature extraction difficult. As an alternative

for the tree-based representation for sentence structures, we

adopt a graph-based method. That is, we represent each

interaction example given by the shared task in the form of

a directed graph, where an edge corresponds to the dependency

relation between two vertices, a head and its dependent. Based

on the graph structure, the path between two entities is found

by the shortest path algorithm and then the scope of structure

for interaction learning is confined to the directed shortest

dependency path. As a consequence, the shortest path

between two entities in a dependency graph can provide a

more concise representation of information needed to assess

their relation prediction by restricting learning features to

elements inside the path.
With the data representation, we propose four kernels for

interaction learning, namely, predicate kernel, walk kernel,

dependency kernel and hybrid kernel, which can explore a

variety of aspects in syntactic and semantic information on

shortest dependency paths. The kernels are classified into two

distinct methods: feature-based kernel and structure-based

kernel. The feature-based kernel computes the similarity

based on feature sets derived from the graph. On the other

hand, the structure-based kernel is based on the structural

isomorphism between two graphs. The predicate and walk

kernels belong to the feature-based kernel and the dependency

and hybrid kernels, to the structure-based kernel.
In short, we focus our research on the following issues: (1)

what kind of data representation is efficient for retrieving

interactions? (2) What lexical and syntactic features are

useful for the identification of genic interactions and how

can such useful features be incorporated into kernels? (3)

How can structured data like a graph or a tree be processed

with a kernel?
As a result, our kernels efficiently deal with structured data

like our graph as the learning features. In the experiments, we

achieve the best result on the LLL 05 shared task with the walk

kernel, a quite promising F-score of 77.5.

This article is organized as follows: In Section 2, we describe

the data representation and introduce the kernels that we

propose. In Section 3, we present the data set for experiments

and support vector machine (SVM) learning. Finally, we discuss

some experimental results and end with conclusion remarks.

2 METHODS

The main task of prior information extraction (IE) systems in natural

language processing (NLP) literature is to recognize names such as

people, organizations and locations, and relations between them by

applying various machine-learning (ML) methods. However, there have

been few attempts to develop ML techniques for extracting relations in

the biomedical domain (Bunescu et al., 2005; Riedel and Klein, 2005).

a GerE stimulates cotD transcription and inhibits cotA transcription in

vitro by sigma K RNA polymerase, as expected from in vivo studies,

and, unexpectedly, profoundly inhibits in vitro transcription of the

gene (sigK) that encode sigma K.

b We analyzed the abilities of fibrillins and LTBPs to bind latent TGF-

beta by their 8-Cys repeats.

c In vitro GAS41 bound to the C-terminal part of the rod region of

NuMA.

Fig. 1. Data representation of kernels.

1VB, TO and IN are POS tags for verb, to and preposition that are
defined in Penn Treebank.

Kernel approaches

119

The main reason is the lack of a good quality data set that meets the

requirements of the NLP and ML fields at the same time. Recently,

works on biomedical relation extraction using ML techniques have

been attempted as the linguistically well-annotated data set such as the

LLL 05 was constructed. In this study, we also test our method on the

LLL 05 shared task, which is tailored to reflect the requirements of

deep-level analysis for learning interactions. In this section, we first

introduce the LLL task and its annotated linguistic information and

then describe the data representation and kernel approaches we suggest.

2.1 LLL shared task

The LLL 05 challenge task is to learn rules for identifying protein/gene

interactions between two NEs and their roles, agent or target. The task

focuses on information extraction for ‘transcription’ in ‘Bacillus

subtilis’, which has been used as a model bacterium in genetic and

molecular biological studies. The ‘transcription’ is also a central

phenomenon in functional genomics involved in gene interaction,

which is a popular IE problem.

The data set consists of Medline biology abstracts retrieved by the

query ‘Bacillus subtilis and transcription’. The training data includes

three distinct relations: an explicit action, a binding of the protein on

the promoter of the target gene and a membership to a regulon family.

The challenge data contains various types of linguistic information such

as words, their lemma and the syntactic dependencies among words.

The interactive NE pairs in the training sentences are annotated

indicating the agent and target of an interaction.

For the syntactic analysis, the LinkGrammar Parser was used (Sleator

and Temperly, 1993). The analysis contains morpho-syntactic tags and

syntactic dependency functions. The LinkGrammar formalism is closely

related to dependency grammar and builds a set of labeled links between

pairs of words, rather than constructing phrase structures in a tree form.

A link represents the grammatical dependency relation between a head

and its dependent in the form of ‘F:A-B’, where F is a function of the

relation that links two words, A is a morpho-syntactic head and B is

the morpho-syntactic dependent for the head. The dependency is

represented by five different morpho-syntactic categories, V (verb),

V_PASS (passive verb), N (noun), ADJ (adjective) and ADV (adverb)

and seven functions of relations, APPOS (apposition), COMP_prep

(prepositional complement), MOD (modifier), MOD_ATT (attributive

modifier), NEG (negation), OBJ (object) and SUBJ (subject) (Sophie

Aubin, 2005). We can consider the relation between ‘controlled’ and

‘expression’ marked with labels such as (‘subj:V_PASS-N’, ‘control’,

‘word’) in the sentence in Figure 2a.

Because Link Grammar parsing is computationally efficient and

convenient for representing relationships between words, it has been

adopted in many biomedical relation extraction systems (Ding et al.,

2003; Tsivtsivadze et al., 2006).

The LLL task assumes that all candidate NEs for genic interaction

can be recognized in advance by the NE dictionary. The dictionary

contains all NEs, their variants and synonyms. However, the category

of each NE such as gene and protein is not specified in the dictionary,

which can be important for determining its role, agent or target.

2.2 Data representation

Figure 2 exhibits some examples of training sentences annotated with

dependency relations. In the figure, each directed edge corresponds to

the syntactic dependency relation between two nodes, the head and its

dependent. Dependency relations are shown as arrows from the

dependent to its head. The predicate ‘genic_interaction(id_NE1,

id_NE2)’ refers to an interaction between id_NE1 and id_NE2, where

id_NE1 and id_NE2 are positions of the agent NE1 and the target NE2,

respectively.

There are several characteristics in the Link Grammar’s structural

annotations. First, separate trees can be constructed for subordinate

clauses as in Figure 2b, since there is no explicit notion of a root word

for a sentence in the Link Grammar. Second, one child (dependent) can

be shared by two parents (heads), as shown the Figure 2c. Due to this

property, the structure of a sentence can be adequately expressed by a

directed graph rather than by a tree.

In this study, we regard a parsed sentence as a directed graph and

restrict the structure of interest to the shortest syntactic path of two

NEs instead of the whole graph. In general, it is important to strip out

a Analysis of the expression of a translational ywhE-lacZ fusion showed that
ywhE expression is sporulation-specific, and is controlled predominantly by the
forespore-specific sigma factor sigma(F), and to a lesser extent by sigma(G)

show/v control/v_pass

 subj mod comp_by comp_to comp_by

analysis/n expression/n translational/adv sigF/NE25 extent/n sigG/NE32

mod_att mod_pred mod_att mod_att

: ywhE/NE12 sporulation-specific/adj factor/n lesser/adj

 mod_att mod_att

 forespore-specific/adj sigma/n

genic_interaction(25,12) (32,12)

b In addition to controlling transcription of phrC, sigmaH appears to control
expression of at least one other gene required for production of CSF.

appear/v control/v

comp_in subj obj

addition/n sigH/NE7 exression/n require/v_pass

 comp_to comp_of subj comp_for

control/n gene/n production/n

 obj mod_att comp_of

transcription/n one/adj CSF/n

 comp_of

 phrC/NE6
genic_interaction(7,6)

c KinC and KinD were responsible for Spo0A~P production during the exponen-
tial phase of growth in the absence of KinA and KinB.

KinC/NE29 KinD/NE31
mod_pred mod_pred

 responsible/adj

 comp_for comp_during comp_in

production/n phase/n absence/n

 mod_att mod_att comp_of comp_of comp_of

Spo0A~P/NE35 exponential/adj growth/n KinA/NE47 KinB/NE49
genic_interaction(29,35) (31,35)

d During endospore formation in Bacillus subtilis, the DNA binding protein

GerE stimulated transcription from several promoters that are used by RNA
polymerase containing sigmaK.
 stimulate/v

comp_during subj obj

formation/n GerE/NE9 transcription/n use/v_pass contain/v

 mod_att comp_in mod_att comp_from subj comp_by subj obj

endospore/adj Bacillus/n protein/n promoter/n polymerase/n sigK/NE22

 mod_att` mod_att mod_att

 binding/adj several/adj RNA/n

 mod

 DNA/n

genic_interaction(9,22)

Fig. 2. Examples of biomedical parsed sentences.

S.Kim et al.

120

unnecessary features from the input data as much as possible for

accurate learning. Actually, many words in a dependency graph of a

sentence have no direct influence on relation learning. Thus, we first

narrow down the dependency graph into the shortest syntactic path

between a pair of NEs, which can be defined as a sequence of words

connected by dependency relations. The shortest syntactic path can be

found by using the Dijkstra’s algorithm (Cormen et al., 2001). Figure 3

shows the data representations related to the shortest path between two

NEs, ‘ywhE’ and ‘sigF’ in Figure 2a.

However, we cannot find the path from the dependency graphs in

many cases because every syntactic relation is toward the syntactic head,

as shown in Figure 3a. Thus, we allow edges of the Directed Acyclic

Graph (DAG) to be traversed in any direction when finding the path, so

for each original dependent-head edge labeled with an ‘UP’ direction, we

add the corresponding head-to-dependent edge marked with ‘DN’

direction. As a consequence, the original directed graph like in Figure 3a

is treated as an un-directed graph like in Figure 3b. In this case, we can

find the shortest path from ‘ywhE’ to ‘sigF’ by traversing the edge of

‘comb_by’ in reverse. The dotted arrows in Figure 3b display the shortest

path between the two NEs. Also, all the nodes and edges on the path can

be represented by the string as shown in Figure 3c.

Furthermore, we add predicate information, called ‘PRED’, to the

path string to indicate the direction change. The presence of the ‘PRED’

at a word on the path means that the directions of the left or right edges

connected to the word are changed. This often occurs in predicative

words. In the example, the node of ‘control’ is identified as a predicate

by the connected edges, ‘subj(UP)’ and ‘comp_by(DN)’.

The shortest paths we suggest contain linguistic information such as

lexical information of words, their POS, typed dependencies between

words and directions of the dependencies, which provide contextual and

structural information for relation learning.

In the case of ‘sigF’ and ‘ywhE’ in Figure 2a, because the interactive

entities serve as arguments for the predicate, ‘control’, they will be

connected directly on the shortest path. If two entities belong to

different predicate-argument structures like ‘GerE’ and ‘sigK’ of

Figure 2d but the substructures are connected by common arguments,

then the shortest path will pass the common arguments. In addition,

there is a case that the shortest path does not exist for an interactive NE

pair like ‘sigH’ and ‘phrC’ in Figure 2b.

We use the graph representation of the shortest path to train

the predicate and walk kernels for relation learning (Fig. 3c).

The dependency graph can be represented by the dependency lists

as presented in Figure 3d. The lists consist of the dependency list for

word and POS. For each node w, the word dependency list contains

the word at the node and a set of (relation, dependent_word) pairs,

which are the direct dependents of w. The POS dependency list contains

the morpho-syntactic information of w and a set of (relation,

dependent_ pos) pairs, which are the direct dependents’ POS of w. For

example, the word ‘expression’ has the relation set with its direct

children as follows: {(subj, expression), (comp_by, NE2)}. We use the

list structures for the other kernel methods, the dependency and hybrid

kernels (Fig. 3d).

2.3 Kernels

A kernel can be thought of as a similarity function for pairs of objects.

In our work, an object corresponds to the shortest path between two

NEs on the syntactic graph for a sentence. In this work, we suggest two

distinct types of kernels to extract relations: feature-based kernels and

structure-based kernels. The feature-based kernels use a well-known

polynomial kernel on feature sets derived from the graph for computing

the similarity, whereas the structure-based kernels calculate the graph

similarity directly. In our models, the predicate and walk kernels belong

to feature-based kernels and the dependency and hybrid kernels belong

to structure-based kernels.

An object in the feature-based kernels is represented by a traditional

feature enumeration vector. That is, the predicate and walk kernels are

just discriminated not by the kernel function but by the feature

extraction methods. Actually, the two kernels operate on the same

kernel, the so-called ‘polynomial kernel’, with different feature vector

representations. However, we confer the names of predicate and walk

kernel on the two models in order to emphasize the difference of the

feature extraction framework.

In contrast, we design the kernel functions for the structure-based

kernels such as dependency and hybrid kernels. An object in the

structure-based kernels is represented with a vector in which each

element contains a structural similarity value with other objects. The

structure-based kernels can provide a good formalism to learn the

structured data like a graph or a tree by using structural isomorphism.

The kernels we propose are learned and tested by SVM. SVM uses

the kernel functions to compare the test object with those derived

from training sentences. Since the feature-based kernels use the

polynomial kernel as a kernel function, descriptions of the predicate

and walk kernels in Sections 3.2.1 and 3.2.2 are mostly related to the

feature sets used in the polynomial kernel. In Sections 3.2.3 and 3.2.4,

the kernel functions for computing the structural similarity

are introduced.

All NE pair objects are represented in word order and the SVM

classifies a test object for a pair of NEs into ‘TA’, ‘AT’ or ‘O’. ‘TA’

denotes the target-agent relation, where the former NE is a target and

the latter NE is an agent. ‘AT’ stands for the agent-target relation and

‘O’ means that two NEs have no genic relation. With the kernels, we

gradually increase the internal information on the shortest path from

links related to predicate and walk to the whole dependency structure

on the path.

2.3.1 Predicate kernel In this model, we focus on the central

role of predicates in relation extraction. We assume that a predicate and

its arguments are crucial for relation extraction. That is, a pair of NEs is

regarded to have a genic relationship if an interaction predicate exists

a original directed acyclic graph b traverse in reverse

control/V_PASS control/V_PASS

 subj comp_by subj comp_by

expression/N sigF/NE expression/n sigF/NE

 mod_att mod_att

ywhE/NE ywhE/NE

c shortest dependency path string between “ywhE” and “sigF”
ywhE/NE mod_att(UP) expression/N subj(UP) control/V_PASS/PRED comp_by(DN)

sigF/NE

d dependency list of the directed graph a)
word dependency list

Node Node Relation set
NE1 { }
expression {(mod_att, NE1)}
Control {(subj,expression),(comp_by,NE2)}
NE2 { }

POS dependency list
POS POS Relation set
NE1 { }
N {(mod_att, NE1)}
V_PASS_PRED {(subj,N),(comp_by,NE2)}
NE2 { }

Fig. 3. Data representation of the interaction (‘ywhE’ and ‘sigF’) in

Figure 2a.

Kernel approaches

121

on the shortest path between two NEs and if each NE serves as a

meaningful argument of the interaction predicate in a certain syntactic

configuration. This problem is analogous to semantic role labeling that

assigns semantic roles of ‘agent’ and ‘target’ to NEs (Xue and Palmer,

2004).

Similar to semantic role labeling features, the predicate kernel is

developed with features related to predicates and their immediate child

nodes on the dependency path. As mentioned before, we identify the

node as a predicate when the directions of the edges connected to

the node are changed. The features consist of basic features and

conjunctions of the basic features as shown in Table 1. As basic

features, predicates, their POS, their immediate child nodes, and

dependencies with the predicates and the immediate child nodes are

used. That is, this kernel is designed to consider the topmost structures

rooted at predicate nodes by allowing only features related to predicates

and their arguments. Besides the features, SAME_NE, SAME_ROLE

and LINK_TYPE features are additionally used. The binary feature,

SAME_NE indicates if the strings of two NEs are the same or not, and

the SAME_ROLE feature indicates if a coordinate conjunction like

‘and/or’ joins an NE pair. The LINK_TYPE feature shows how many

predicates on the shortest dependency path connecting two NEs there

are. The feature has the value of No_Link when there is no path

between an NE pair. The values, Link_OnePred and Link_Preds,

denote that a path includes one predicate and more than one predicate,

respectively. In addition, conjunctions of these basic features are

considered. Figure 4a shows the features for the predicate kernel with

respect to the interaction (25, 12), i.e. ‘sigF’ and ‘ywhE’ in Figure 2a.

Here, we normalize all NEs to ‘NE’ to reduce the data sparseness.

In the case of the predicate kernel and the walk kernel, xi, the training

feature vector of pattern i, is passed to the polynomial kernel for SVM

classification. The kernel function is represented as follows:

K ðxi,xjÞ ¼ ð�xTi xj þ rÞd

Here, xi is the feature vector of pattern j, and �, r and d are kernel

parameters (Shawe-Taylor and Cristianini, 2000). The SVM empirically

looks for an optimal separating hyperplane that maximizes the distance

(margin) between the hyperplane and the support vectors on each class.

Support vectors are the nearest training vectors to the hyperplane. The

polynomial kernel maps the training vector into a higher dimensional

space in order that SVM can find a linear separating hyperplane in the

higher dimensional space.

2.3.2 Walk kernel In Figure 3a, the NE, ‘ywhE’ does not have

any direct syntactic relation with the predicate, ‘control’, as it operates

as the modifier of the noun ‘expression’. That is, ‘ywhE’ that is not

directly governed by the predicate has an interaction relation with

‘sigF’. In order to capture the contextual information, we consider the

walk information in this kernel. In our path-based syntactic structure,

it is rather easy to give structural information to the learning scheme

because a path reflects the dependency relation map for words on the

path between two NEs. In the walk kernel, the structural information is

defined by a walk in a graph.

To formalize, let P¼ (V, E) be a graph, where V and E are a set of

vertices and edges, respectively.Given v2V and e2E, a walk is defined as

alternating sequences of vertices and edges, vi, ei,iþ 1, viþ 1, eiþ 1,iþ 2, . . .,

viþ n� 1, beginning with a vertex and ending with a vertex. The

length of a walk is the number of edges that it uses. We take into

consideration walks of length 1, namely, vi, ei,iþ 1, viþ 1, among all

possible subsets of walks on a path between two arbitrary NEs. We call

it v-walk in this article.

Besides v-walk, we define e-walk that starts and ends with an edge

(e.g. ei, iþ 1, viþ 1, eiþ 1, iþ 2). It is actually not a walk defined in the

graph theory but an ad hoc concept to provide a syntactic structure for

the learning model because contexts by syntactic relations are crucial.

We thus consider the e-walk of ei,iþ 1, viþ 1, eiþ 1, iþ 2, too. For each of

the v-walk and e-walk, we consider lexical walks and syntactic walks.

The lexical walk consists of lexical words and dependency relations, and

the syntactic walk, of POS and dependency relations, respectively.

Consequently, this walk kernel can look more closely into the

information inside the shortest path as compared to the predicate kernel

that is minimal to some extent, since all possible contiguous subpaths of

restricted length are considered. Figure 4b shows the features for the

walk kernel with respect to the interaction (‘sigF’, ‘ywhE’). LW and SW

denote lexical walk and syntactic walk, respectively. We add the

direction of ‘UP’ or ‘DN’ to each edge and ‘PRED’ to the POS of the

identified predicates. Also, all NEs are used as ‘NE’ instead of their

name.

2.3.3 Dependency kernel In the previous two kernels, we

encoded structure properties related to nodes and edges on the shortest

path with feature vectors. As features, we used links related to

predicates and their direct children on the shortest path for the

predicate kernel, and syntactic and semantic walks for the walk kernel.

However, the feature-based approaches can sometimes fail to identify

similar relations because the dependency path we consider is sensitive to

small changes of parse-trees. In addition, structured data like a tree or a

graph is not often represented properly by flat features.

Thus, we do not explicitly generate feature vectors in the following

kernels but, instead, directly calculate the similarity between two

shortest path graph structures by investigating common subgraphs.

The kernel functions between a pair of objects measure how similar

two graphs are by how many common subgraphs they share. The

isomorphism between two graphs is established in terms of common

word dependencies and common POS dependencies. As a result, this

kernel can implicitly explore a much larger feature space than feature

approaches by using the structural similarity considering all sub-

structures without enumerating features.

This kind of kernel methodology has been actively applied to many

areas such as parsing (Collins and Duffy, 2001), semantic role labeling

(Moschitti, 2004) and relation extraction (Culotta and Sorensen, 2004;

Fig. 4. Data representation of kernels.

S.Kim et al.

122

Bunescu and Mooney, 2005; Zelenko et al., 2003). In fact, the design of

kernels in the structural domain is one of rich research areas in NLP.

Also, kernel approaches have been used for a lot of relation extraction

systems on the ACE2 corpus, the main goal of which is to find target

relations such as person-affiliation and organization-location. On the

other hand, the approaches are still rare in the biomedical relation

extraction area (Bunescu et al., 2005).

Our dependency kernel is a modification of Collins and Duffy’s

convolution kernel for a dependency structure (Collins and Duffy,

2001). We define the dependency kernel to capture the isomorphism

between two shortest path graph structures. For this, we make a matrix

whose element contains the similarity value of two graphs evaluated by

the number of common subgraphs. As mentioned earlier, the graph

means the directed shortest dependency graph between a pair of NEs. It

can be represented as a dependency list form that is composed of a set

of nodes and a set of relations between a node and its child nodes, as

shown in Figure 3d. The figure shows the dependency list correspond-

ing to the interaction (‘sigF’, ‘ywhE’) in Figure 2a.

Before we describe how isomorphism is established between two

graphs, we will introduce some notations. Let d1 and d2 be dependency

graphs, and N1 and N2 be the sets of nodes in the dependency graphs,

respectively. For each node x, word(x) is the word at the node and

childrenw(x) refers to the direct dependents of x represented by the set of

(relation, word) pairs that consists of the words of direct dependents of x

and the syntactic relations with them. POS(x) refer to the POS of node x

and childrenp(x) denotes the set of (relation, POS) pairs that are direct

dependents of x. Given two parent nodes n1 and n2, scw(n1, n2) is the set

of common word dependencies between two subgraphs rooted by n1
and n2, respectively. scp(p1, p2) corresponds to the set of common POS

dependencies between two subgraphs rooted by POS p1 and p2,

respectively. If the direct child nodes of two parent nodes, x and y are

the same word and have the same dependent relation with their parents

n1 and n2, then the pair (x, y) is an element of scw(n1, n2).

Also, Cw(n1, n2) is the number of common subgraphs between two

graphs rooted at n1 and n2 nodes. Cp(p1, p2) denotes the number of

common subgraphs rooted at POS p1 and p2. As presented in Equation

(2), Cw and Cp are computed recursively over all subgraphs. That is,

if there is no child of n1 or n2, or if two nodes are different words, then

Cw(n1, n2) returns 0. Otherwise, it recursively calls Cw with respect to

their common child pairs in the set scw(n1, n2).

SCwðn1, n2Þ:

SCwðn1, n2Þ ¼fðx, yÞjðrelation,xÞ 2 childrenðn1Þ,

ðrelation,yÞ 2 childrenðn2Þ,wordðxÞ ¼ wordð yÞg

SCPð p1, p2Þ ¼fðx, yÞjðrelation,xÞ 2 childrenð p1Þ,

ðrelation, yÞ 2 childrenð p2Þ,POSðxÞ ¼ POSð yÞg

ð1Þ

if wordðn1Þ 6¼ wordðn2Þ or childrenðn1Þ is empty or childrenðn2Þ is empty,

then Cwðn1, n2Þ ¼ 0

else Cwðn1, n2Þ ¼
Y

ðx, yÞ2SCwðn1, n2ÞðCwðx, yÞ þ 2Þ � 1 ð2Þ

if POSð p1Þ 6¼ POSð p2Þ or children ð p1Þis empty or children ð p2Þ is empty,

then Cpð p1, p2Þ ¼ 0

else Cpð p1, p2Þ ¼
Y

ðx, yÞ2SCpð p1, p2ÞðCpðx,yÞ þ 2Þ � 1

Then, we can define the dependency kernel function to evaluate the

similarity of two graphs in terms of syntactic dependency as follows:

KDðd1, d2Þ ¼
X

n12N1, n22N2

Cwðn1, n2Þþ
X

p1 2P1, p2 2P2

Cpð p1, p2Þ

It is a summation of common word dependency subgraphs and

common POS dependency subgraphs between two graphs. For

example, we can obtain the self-similarity value with respect to the

dependency list of Figure 3c as Figure 4c. In the case of

Cw(‘control’,‘control’), it is computed by the common child nodes,

‘NE2’ and ‘expression’, and further Cw (‘expression’, ‘expression’) is

recursively computed by the common child ‘NE1’, and Cw(‘NE1’,’NEl’)

returns 0 since there is no child node of NE1. We normalize entities with

distinguishing the preceding NE as NE1 and the following NE, as NE2.

2.3.4 Hybrid kernel The dependency kernel is computed using

word and POS dependencies with parent nodes and all their children’s

nodes that two graphs have in common. Thus, the dependency kernel is

a word-level model based on words and their POS in the dependency

graph. In order to give more contextual information, we define the

hybrid kernel that adds common walks between two graphs to word-

level model. The hybrid kernel is a composite kernel that combines

the dependency and walk kernels to take advantage of two models. In

the hybrid kernel, the lexical and syntactic walks are combined with the

dependency kernel by summing up the number of common walks as

follows:

KH ðd1, d2Þ ¼ KD ðd1,d2Þ þ KW ðd1,d2Þ

KW ðd1,d2Þ ¼
Xjd1 j�sþ1

i¼1

Xjd2j�sþ1

j¼1

Kpðd1ði : iþ pÞ,d2ð j : jþ pÞðp ¼ 3Þ

Kpðs,tÞ ¼
1 if s ¼ t

0 otherwise

� ð3Þ

In Equation (3), KD(d1, d2) denotes the value of dependency kernel

and KW(d1, d2) denotes the number of common walk features

between two shortest path strings, d1, d2. The string d(i:iþ p) means

the length p substring di . . . diþ p of d. In the case of interaction (‘sigF’,

‘ywhE’) in Figure 2a, the similarity value of a hybrid kernel is evaluated

as in Figure 4d. It is the summation of Figure 4b) and c.In fact, both

common subgraphs and common walks reflect the similarity of

structures between two graphs in different ways. While the model by

Table 1. Features for the predicate kernel

Basic feature

Feature Description

Pword Predicate word(s)

Ppos Pos of the predicate word(s)

L_srole Syntactic relation of immediate

left child and predicate

R_srole Syntactic relation of immediate

right child and predicate

L_head Word of predicate’s immediate

left child

R_head Word of predicate’s immediate

right child

SAME_NE Are the NEs the same?

SAME_ROLE Are L_srole and R_srole

the same?

LINK_TYPE No_Link, Link_OnePred,

Link_Preds

Feature conjunction

pwordþppos, pwordþL_srole, pwordþR_srole, pwordþL_sroleþ

R_srole, pposþL_srole, pposþR_srol, pposþL_sroleþR_srole,

pword/posþL_srole pword/ppos þR_srole, pword/pposþL_srole

þR_srole

2http://www.nist.gov/speech/tests/ace.

Kernel approaches

123

http://www.nist.gov/speech/tests/ace

common sub-structures gives a more comprehensive comparison of two

graphs, common walks provide simplified context information that

helps alleviate the data sparseness problem.

3 RESULTS

3.1 Experimental results and discussions

In the experiments, we evaluate the proposed four relation
kernels using SVM on the LLL 05 challenge task. As a

preprocessing step for genic interaction extraction, candidate

biomedical NEs (genes/proteins) are first recognized using the

provided NE dictionary.
We conducted learning for the kernels with 464 interacting

NE pairs including 300 negative NE pairs, and classified 330

NE pairs in the test set. The training data of the LLL shared

task does not explicitly describe negative examples, so any pairs

for which interaction is not specified are used as negative

examples for effective learning. At present, our system assigns

the ‘O’ class to the NE pairs if any link path from source NE to

destination NE is not found. Most of the NE pairs actually

have no genic interaction but some pairs have genic relations.
As mentioned earlier, we tested our kernels with a SVM

learner. Because SVM robustly handles a large-sized feature set

and provides a high generalization performance even on unseen

examples, it has been successfully applied to many NLP tasks.

For the SVM learning, we used the LIBSVM 2.843 package

wherein we can utilize our own kernel with the pre-computed

kernel option as well as other well-known kernels such as
polynomial, radial basis and sigmoid functions (Hsu et al.,

2003). It also supports multiclass classificationcc. In the case of

the predicate kernel and the walk kernel, feature vectors are

passed to the polynomial kernel with parameters, �¼ 1, d¼ 2,

r¼ 0, c¼ 1000 for C-SVM classification.4 In contrast, the

dependency and the hybrid kernel were directly used with the

pre-computed kernel option.

Table 2 shows the performance of each kernel over the LLL

data. The LLL task requires directed interactions, so the agent

NE and the target NE for an interaction should be identified.

The correct answer for each sentence is computed in a strict

manner. For a given sentence ID, an interaction in the

prediction file must be exactly the same as that in the key file

of the evaluation system. In this task, we can evaluate

the performance of each kernel only on the Web program5

and the correct answers for the test data are hidden.

The program computes the F-score for a given prediction file

based on the following scores: ‘COR’ (correct), ‘MIS’ (missing)

and ‘SPU’ (spurious). COR denotes the number of interactions

in the prediction file that exists in the key file. MIS is

the number of interactions in the key file that is missing in

the prediction file. SPU is the number of interactions in the

prediction file that is wrong, i.e. is not in the key file.

The formula for the F-score is

PREðprecisionÞ ¼
COR

ðCORþ SPUÞ

RECðrecallÞ ¼
COR

CORþMIS

F�score ¼
2* ðPRE *RECÞ

ðPREþ RECÞ

ð4Þ

As shown in Table 2, the walk kernel outperforms the other

kernels. It seems that the predicate kernel is less informative

than the walk kernel since only predicates and their direct child

nodes on the shortest paths of NE pairs are considered. In fact,

the predicate kernel considers the most minimal subparts of the

shortest path compared with other kernels. As we can expect,

the walk kernel was better than the predicate kernel.
The performance of the dependency kernel was the worst

among the four kernels. In general, structure-based kernels are

increasingly appealing for learning rich structural data without

extensive feature engineering and selection process. However,

they producedmore erroneous results in our experiments. One of

the reasons might be that the kernel operates on the compara-

tively concise structures, the shortest graph paths between NE

Table 2. Extraction performance on the LLL data

Kernel Action Bind Regulon No interaction All

Predicate COR¼ 28 COR¼ 8 COR¼ 3 COR¼ 0 COR¼ 39 PRE¼ 70.9

MIS¼ 8/36 MIS¼ 6/14 MIS¼ 1/4 MIS¼ 0/0 MIS¼ 15/54 REC¼ 72.2

SPU¼ 1/29 SPU¼ 6/14 SPU¼ 0/3 SPU¼ 9/9 SPU¼ 16/55 F-M¼ 71.5

Walk COR¼ 29 COR¼ 13 COR¼ 3 COR¼ 0 COR¼ 45 PRE¼ 72.5

MIS¼ 7/36 MIS¼ 1/14 MIS¼ 1/4 MIS¼ 0/0 MIS¼ 9/54 REC¼ 83.3

SPU¼ 3/32 SPU¼ 7/20 SPU¼ 0/3 SPU¼ 7/7 SPU¼ 17/62 F-M¼ 77.5

Dependency COR¼ 20 COR¼ 11 COR¼ 3 COR¼ 0 COR¼ 34 PRE¼ 58.6

MIS¼ 16/36 MIS¼ 3/14 MIS¼ 1/4 MIS¼ 0/0 MIS¼ 20/54 REC¼ 62.9

SPU¼ 2/22 SPU¼ 7/18 SPU¼ 0/3 SPU¼ 15/15 SPU¼ 24/58 F-M¼ 60.7

Hybrid COR¼ 25 COR¼ 12 COR¼ 3 COR¼ 0 COR¼ 40 PRE¼ 65.5

MIS¼ 8/36 MIS¼ 2/14 MIS¼ 1/4 MIS¼ 0/0 MIS¼ 14/54 REC¼ 74.0

SPU¼ 1/29 SPU¼ 8/20 SPU¼ 0/3 SPU¼ 10/10 SPU¼ 21/61 F-M¼ 69.5

3http://www.csie.ntu.edu.tw/�cjlin/libsvm/
4SVM employs an iterative training algorithm, which is used to minimize
an error function. SVM models can be variously classified according to
the form of the error function. C-SVM is one of them and c is a penalty
parameter of error terms. 5http://genome.jouy.inra.fr/texte/LLLchallenge/scoringService.php

S.Kim et al.

124

http://www.csie.ntu.edu.tw/
http://genome.jouy.inra.fr/texte/LLLchallenge/scoringService.php

pairs, unlike other structure-based approaches. Additional

constituents not on the path can play an important role in

computing the similarity between two structures. Another

reason is that the dependency kernel would not be optimal

since all common subgraphs are counted equally regardless of

importance of each subgraph. In other words, some subgraphs

can be more useful structures than others for learning. In

addition,Cw andCp have different properties in different feature

spaces. That is, Cw is related to lexical and Cp, to morpho-

syntactic subgraphs. However, the current kernel function for

the dependency kernel makes no distinction between structures

with different properties, but focuses only on the common

subgraph counts. In contrast, the feature-based models learn

different weights for different features. More considerable work

remains to be done to extract the full potential of structure-based

kernels since the equally weighted counts of all subgraphs are not

much effective for relation learning.
The hybrid kernel was better than the dependency kernel but

was just comparable to the predicate kernel. This is because

walk provides more concrete information, which shows the

effectiveness of structural information in relation extraction.

In conclusion, it turns out that the feature-based kernels

outperform the structure-based kernels in our experiments.

Also, the simplified structural information provided by walks

helps to identify the relation of a pair of NEs. It is interesting

to note that the walk in three elements of (vertex, edge, vertex)

or (edge, vertex, edge) provides good evidence for relation

extraction, in that it is similar in other NLP applications such

as language modeling and POS tagging. The use of the lexical

and syntactic walks shows the best performance for genic

interaction extraction.
According to the evaluation results, our system often failed

to handle the negative examples. As shown in Table 2, it tended

to misidentify the NE pairs with no interaction as interactive

pairs. In particular, the predicate kernel was weak for the

decision of ‘bind’ interaction.
Next, we compared our system with other systems tested on

the LLL data. Table 3 shows the comparison results.

Hakenberg et al. (2005) applied sequence alignment and finite

state automata to generate syntactic patterns for identifying

genic interactions. Riedel and Klein (2005) suggested a Markov

Logic model to create a set of weighted clauses on a discourse

representation structure that can classify pairs of NEs as genic

interactions. Fundel et al. (2006) created candidate relations

from dependency parse trees by applying a small number of

rules. To our knowledge, our walk kernel showed the best

performance on the LLL data set. In particular, the recall rate,

which has been pointed out as a drawback of pattern

approaches, was high, although it was impossible to analyze

errors in detail because we could not get the set of correct

interactions for the test data.

3.2 Conclusions and future work

In this article, we suggested four genic relation extraction

kernels defined on the shortest dependency path between two

NEs. We gradually augmented structural information on the

shortest dependency path from the predicate kernel to the

hybrid kernel. We dealt with the interaction extraction problem

in terms of data representation, semantic role and syntactic

aspects. As a result, we achieved a very promising result on the
LLL data set.

One of the objectives for future works is to investigate how

much influence words that are not on the shortest dependency
path have on the interaction extraction decision, or that the

words have nothing to do with the decision. Also, we will test

and evaluate our kernels on the BioInfer6 corpus that is based

on Link Grammar dependency graphs. The LLL task data is

the manually verified parsing output. Thus, we need to check

how unfiltered dependency graphs found in real-world data

affect performance.
In addition, we expect that our kernel can be extended with

other kernels, which have been used for relation extraction,

such as the contiguous kernel, sparse kernel, dependency tree

kernel and subsequence kernel (Bunescu et al., 2005; Culotta
and Sorensen, 2004; Zelenko et al., 2003).

ACKNOWLEDGEMENT

This work was supported by the BK21 program of the Ministry

of Education, Republic of Korea.

Conflict of Interest: none declared.

REFERENCES

Aubin,S. (2005) Challenge LLL syntactic analysis guidelines. Technical reports.

Université Paris Nord.

Blaschke,C. et al. (1999) Automatic extraction of biological information from

scientific text: protein-protein interactions. In Proceedings of American

Association for Artificial Intelligence, Orlando, USA, pp. 60–67.

Bunescu,R. and Mooney,R. (2005) Subsequence kernels for relation extraction.

In Proceedings of the 19th Conference on Neural Information Processing

Systems, Whistler, Canada.

Bunescu,R. et al. (2005) Comparative experiments on learning information

extractors for proteins and their interactions. Artif. Intell. Med., 33, 135–155.

Carreras,X. and Màrquez,L. (2005) Introduction to the CoNLL-2005 shared

task: semantic role labeling. In Proceedings of the 9th Conference on

Computational Natural Language Learning (CoNLL), Ann Arbor, USA,

pp. 152–164.

Collins,M. and Duffy,N. (2001) Parsing with a single neuron: convolution kernels

for natural language problems. Technical reports UCSC-CRL-01-01.

University of California at Santa Cruz.

Cormen,T.H. et al. (2001) Introduction to Algorithms. 2nd edn. MIT Press and

McGraw-Hill, ISBN 0-262-03293-7. Section 24.3: Dijkstra’s algorithm,

Cambridge, USA, pp. 595–601.

Culotta,A. and Sorensen,J. (2004) Dependency tree kernels for relation

extraction. In Proceedings of ACL 2004, Barcelona, Spain, pp. 423–429.

Ding,J. et al. (2003) Extracting biochemical interactions from

MEDLINE using a link grammar parser. In Proceedings of the 15th

Table 3. comparison with other systems

IE system Precision Recall F-M

Riedel and Klein (2005) 65.0 72.2 68.4

Hakenberg et al. (2005) 50.0 53.8 51.8

Fundel et al. (2006) 68 78 72

Our system 72.5 83.3 77.5

6http://www.it.utu.fi/BioInfer/

Kernel approaches

125

http://www.it.utu.fi/BioInfer/

IEEE International Conference on Tools with Artificial Intelligence,

Sacramento, USA, pp. 467–471.

Fundel,K. et al. (2006) RelEx – relation extraction sing dependency parse trees.

Bioinformatics, 23, 365–371.

Grinberg,D. et al. (1995) A robust parsing algorithm for link grammars.

Technical report CMU-CS-95-125. Carnegie Mellon University Computer

Science, and In Proceedings of the 4th International Workshop on Parsing

Technologies, Prague, Czech, pp. 111–125.

Grishman,R. (1995) Message Understanding Conference 6, Columbia, USA.

http://cs.nyu.edu/faculty/grishman/muc6.html.

Hakenberg,J. et al. (2005) LLL05 challenge: genic interaction extraction –

identification of language patterns based on alignment and finite state

automata. In Proceedings of the 4th Learning Language in Logic workshop

(LLL05), Edinburgh, UK, pp. 38–45.

Hao,Y. et al. (2005) Discovering patterns to extract protein-protein interactions

from the literature: Part II. Bioinformatics, 21, 3294–3300.

Hsu,C. et al. (2003) A practical guide to vector classification. http://www.csie.

ntu.edu.tw/�cjlin/libsvm/.

Huang,M. et al. (2004) Discovering patterns to extract protein-protein interac-

tions from full texts. Bioinformatics, 20, 3604–3612.

Jang,H. et al. (2006) Finding the evidence for protein-protein interactions from

PubMed abstracts. Bioinformatics, 22, 220–226.

Moschitti,A. (2004) A study on convolution kernels for shallow semantic parsing.

In Proceedings of ACL 2004, Barcelona, Spain, pp. 335–342.

Ono,T. et al. (2001) Automated extraction of information on protein-protein

interactions from the biological literature. Bioinformatics, 17, 155–161.

Riedel,S. and Klein,E. (2005) Genic interaction extraction with semantic and

syntactic chains. In Proceedings of the 4th Learning Language in Logic

workshop (LLL05), Edinburgh, UK, pp. 69–74.

Shawe-Taylor,J. and Cristianini,N. (2000) Support Vector Machines and Other

Kernel-based Methods. Cambridge University Press, Cambridge, UK.

Sleator,D. and Temperly,D. (1993) Parsing English with a link grammar. In Third

International Workshop on Parsing Technologies, Tilburg, Netherlands,

pp. 277–291.

Tsivtsivadze,E. et al. (2006) Locality-convolution kernel and its application to

dependency parse ranking. In Proceedings of Advances in Applied Artificial

Intelligence, 19th International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, IEA/AIE, Annecy,

France, pp. 610–618.

Xue,N. and Palmer,M. (2004) Calibrating features for semantic role labeling. In

Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP), Barcelona, Spain, pp. 88–94.

Zelenko,D. et al. (2003) Kernel methods for relation extraction. J. Mach. Learn.

Res., 3, 1083–1106.

S.Kim et al.

126

http://cs.nyu.edu/faculty/grishman/muc6.html
http://www.csie

